期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:436 |
Unconditional uniqueness of solution for (H)over dotsc critical NLS in high dimensions | |
Article | |
Lu, Jing1  Xu, Yushun2,3  | |
[1] China Acad Engn Phys, Grad Sch, POB 2101, Beijing 100088, Peoples R China | |
[2] Univ Paris Est, CERM ENPC, Cite Descartes, Marne La Vallee, France | |
[3] Univ Paris Est, LAMA UMR 8050, Cite Descartes, Marne La Vallee, France | |
关键词: Unconditional uniqueness; Paraproduct estimates; Besov spaces; Nonlinear Schrodinger equation; | |
DOI : 10.1016/j.jmaa.2015.10.077 | |
来源: Elsevier | |
【 摘 要 】
In this paper, we study the unconditional uniqueness of solution for the Cauchy problem of (H)over dot(sc) (0 <= s(c) < 1) critical nonlinear Schrodinger equations (NLS). By employing paraproduct estimates and Strichartz estimates, we prove that unconditional uniqueness of solution holds in C-t(I; (H)over dot(sc)(R-d)) for d >= 6. This extends earlier results by Yin Yin Su Win and Y. Tsutsumi [19] and Cazenave [3]. (C) 2015 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2015_10_077.pdf | 306KB | download |