期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:436
Unconditional uniqueness of solution for (H)over dotsc critical NLS in high dimensions
Article
Lu, Jing1  Xu, Yushun2,3 
[1] China Acad Engn Phys, Grad Sch, POB 2101, Beijing 100088, Peoples R China
[2] Univ Paris Est, CERM ENPC, Cite Descartes, Marne La Vallee, France
[3] Univ Paris Est, LAMA UMR 8050, Cite Descartes, Marne La Vallee, France
关键词: Unconditional uniqueness;    Paraproduct estimates;    Besov spaces;    Nonlinear Schrodinger equation;   
DOI  :  10.1016/j.jmaa.2015.10.077
来源: Elsevier
PDF
【 摘 要 】

In this paper, we study the unconditional uniqueness of solution for the Cauchy problem of (H)over dot(sc) (0 <= s(c) < 1) critical nonlinear Schrodinger equations (NLS). By employing paraproduct estimates and Strichartz estimates, we prove that unconditional uniqueness of solution holds in C-t(I; (H)over dot(sc)(R-d)) for d >= 6. This extends earlier results by Yin Yin Su Win and Y. Tsutsumi [19] and Cazenave [3]. (C) 2015 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2015_10_077.pdf 306KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次