期刊论文详细信息
Canadian mathematical bulletin | |
A Sharp Constant for the Bergman Projection | |
Marijan Marković1  | |
[1] Faculty of Natural Sciences and Mathematics, University of Montenegro, Cetinjski put b.b., 81000 Podgorica, Montenegro | |
关键词: Bergman projections; Besov spaces; | |
DOI : 10.4153/CMB-2014-034-0 | |
学科分类:数学(综合) | |
来源: University of Toronto Press * Journals Division | |
【 摘 要 】
For the Bergman projection operator $P$ we prove thategin{equation*}|Pcolon L^1(B,dlambda)ightarrow B_1| = frac {(2n+1)!}{n!}.end{equation*}Here $lambda$ stands for the hyperbolic metric in the unit ball $B$ of$mathbb{C}^n$, and $B_1$ denotes the Besov space with an adequatesemi--norm. We also consider a generalization of this result. This generalizessome recent results due to Perälä.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912050577110ZK.pdf | 15KB | download |