期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:458 |
The Bishop-Phelps-Bollobas property for numerical radius of operators on L1(μ) | |
Article | |
Acosta, Maria D.1  Fakhar, Majid2,3  Soleimani-Mourchehkhorti, Maryam2  | |
[1] Univ Granada, Fac Ciencias, Dept Anal Matemat, E-18071 Granada, Spain | |
[2] Univ Isfahan, Dept Math, Esfahan 81745163, Iran | |
[3] Inst Res Fundamental Sci IPM, Sch Math, POB 19895-5746, Tehran, Iran | |
关键词: Banach space; Bishop-Phelps-Bollobas theorem; Numerical radius attaining operator; Bishop-Phelps-Bollobas property; | |
DOI : 10.1016/j.jmaa.2017.08.060 | |
来源: Elsevier | |
【 摘 要 】
In this paper, we introduce the notion of the Bishop-Phelps-Bollobas property for numerical radius (BPBp-nu) for a subclass of the space of bounded linear operators. Then, we show that certain subspaces of L(L-1(mu)) have the BPBp-nu for every finite measure mu. As a consequence we deduce that the subspaces of finite-rank operators, compact operators and weakly compact operators on L-1(mu) have the BPBp-nu. (C) 2017 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2017_08_060.pdf | 348KB | download |