期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:458
The Bishop-Phelps-Bollobas property for numerical radius of operators on L1(μ)
Article
Acosta, Maria D.1  Fakhar, Majid2,3  Soleimani-Mourchehkhorti, Maryam2 
[1] Univ Granada, Fac Ciencias, Dept Anal Matemat, E-18071 Granada, Spain
[2] Univ Isfahan, Dept Math, Esfahan 81745163, Iran
[3] Inst Res Fundamental Sci IPM, Sch Math, POB 19895-5746, Tehran, Iran
关键词: Banach space;    Bishop-Phelps-Bollobas theorem;    Numerical radius attaining operator;    Bishop-Phelps-Bollobas property;   
DOI  :  10.1016/j.jmaa.2017.08.060
来源: Elsevier
PDF
【 摘 要 】

In this paper, we introduce the notion of the Bishop-Phelps-Bollobas property for numerical radius (BPBp-nu) for a subclass of the space of bounded linear operators. Then, we show that certain subspaces of L(L-1(mu)) have the BPBp-nu for every finite measure mu. As a consequence we deduce that the subspaces of finite-rank operators, compact operators and weakly compact operators on L-1(mu) have the BPBp-nu. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2017_08_060.pdf 348KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:1次