期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:479
The Bochner-Schoenberg-Eberlein property for vector-valued Lipschitz algebras
Article
Abtahi, Fatemeh1  Kamali, Zeinab2,3  Toutounchi, Maryam1 
[1] Univ Isfahan, Dept Math, Esfahan, Iran
[2] Islamic Azad Univ, Isfahan Khorasgan Branch, Dept Math, Esfahan, Iran
[3] Inst Res Fundamental Sci IPM, Sch Math, Niavarari Bldg,Niavaran Sq, Tehran, Iran
关键词: BSE-algebra;    Lipschitz algebra;    Metric space;   
DOI  :  10.1016/j.jmaa.2019.06.073
来源: Elsevier
PDF
【 摘 要 】

Let (K, d) be a compact metric space, 0 < alpha <= 1 and Lip(alpha)K lf the space of the Lipschitz functions on K. It is known that the Banach algebra Lip(alpha)K is a BSE-algebra. In this paper, for a commutative unital semisimple Banach algebra A, we prove that the Banach algebra Lip(alpha)(K, A) of the A-valued Lipschitz functions is a BSE-algebra if and only if A is so. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2019_06_073.pdf 615KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次