期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:479 |
The Bochner-Schoenberg-Eberlein property for vector-valued Lipschitz algebras | |
Article | |
Abtahi, Fatemeh1  Kamali, Zeinab2,3  Toutounchi, Maryam1  | |
[1] Univ Isfahan, Dept Math, Esfahan, Iran | |
[2] Islamic Azad Univ, Isfahan Khorasgan Branch, Dept Math, Esfahan, Iran | |
[3] Inst Res Fundamental Sci IPM, Sch Math, Niavarari Bldg,Niavaran Sq, Tehran, Iran | |
关键词: BSE-algebra; Lipschitz algebra; Metric space; | |
DOI : 10.1016/j.jmaa.2019.06.073 | |
来源: Elsevier | |
【 摘 要 】
Let (K, d) be a compact metric space, 0 < alpha <= 1 and Lip(alpha)K lf the space of the Lipschitz functions on K. It is known that the Banach algebra Lip(alpha)K is a BSE-algebra. In this paper, for a commutative unital semisimple Banach algebra A, we prove that the Banach algebra Lip(alpha)(K, A) of the A-valued Lipschitz functions is a BSE-algebra if and only if A is so. (C) 2019 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2019_06_073.pdf | 615KB | download |