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Let (K, d) be a compact metric space, 0 < α ≤ 1 and LipαK the space of the 
Lipschitz functions on K. It is known that the Banach algebra LipαK is a BSE-
algebra. In this paper, for a commutative unital semisimple Banach algebra A, we 
prove that the Banach algebra Lipα(K, A) of the A-valued Lipschitz functions is a 
BSE-algebra if and only if A is so.
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1. Introduction and preliminaries

The notion of BSE-algebras and BSE functions were first introduced and investigated by Takahasi and 
Hatori in 1990 [21] and subsequently by several authors for various kinds of Banach algebras, such as 
Fourier and Fourier-Stieltjes algebras [15], semigroup algebras [11], [12], [13], abstract Segal algebras [9] and 
Lau product algebras [16]. The interested reader is in addition referred to [3], [7], [9], [10] and [22]. The 
BSE-property also appeared in [14] and [23].

The acronym “BSE” stands for Bochner-Schoenberg-Eberlein and refers to a famous theorem, proved by 
Bochner and Schoenberg [2,19] for the additive group of real numbers. It was generalized by Eberlein [4]
for a locally compact abelian group G, indicating the BSE-property of the group algebra L1(G); see [18] for 
a proof. In fact, this theorem characterizes the Fourier-Stieltjes transforms of the bounded Borel measures 
on locally compact abelian groups. This has led Takahasi and Hatori [21] to introduce the BSE-property 
for an arbitrary commutative and without order Banach algebra A, as follows.
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Let Δ(A) be the character space of A, the space consisting of all nonzero multiplicative linear functionals 
on A. A bounded continuous function σ on Δ(A) is called a BSE-function if there exists a constant C > 0
such that for every finite number of complex numbers c1, ..., cn and the same number of ϕ1, ..., ϕn in Δ(A), 
the inequality ∣∣∣∣∣∣

n∑
j=1

cjσ(ϕj)

∣∣∣∣∣∣ ≤ C

∥∥∥∥∥∥
n∑

j=1
cjϕj

∥∥∥∥∥∥
A∗

(1.1)

holds. The BSE-norm of σ is denoted by ‖σ‖BSE and is defined to be the infimum of all such C. The set of 
all BSE-functions is denoted by CBSE(Δ(A)). It was shown in [21] that CBSE(Δ(A)) is a commutative and 
semisimple Banach algebra, under the norm ‖ · ‖BSE . Moreover CBSE(Δ(A)) is embedded in Cb(Δ(A)), as 
a subalgebra. Note that for any σ ∈ CBSE(Δ(A)), we have

‖σ‖BSE = sup
{∣∣∣∣∣

n∑
i=1

ciσ(ϕi)

∣∣∣∣∣ :

∥∥∥∥∥
n∑

i=1
ciϕi

∥∥∥∥∥
A∗

≤ 1
}
.

Here we provide some preliminaries, which we require throughout the paper. A commutative Banach algebra 
A is called without order if aA = {0} implies a = 0 (a ∈ A). Following [17], a bounded linear operator T
on a commutative and without order Banach algebra A is called a multiplier if it satisfies T (ab) = aT (b), 
for all a, b ∈ A. The set of all multipliers on A will be denoted by M(A), which is a unital commutative 
Banach algebra, called the multiplier algebra of A. By [17, Theorem 1.2.2], for any T ∈ M(A) there exists 
a unique bounded continuous function T̂ on Δ(A) such that

̂T (a)(ϕ) = T̂ (ϕ)â(ϕ),

for all a ∈ A and ϕ ∈ Δ(A). Let

̂M(A) = {T̂ : T ∈ M(A)}.

A commutative and without order Banach algebra A is called a BSE-algebra (or has the BSE-property) if 
it satisfies the condition

CBSE(Δ(A)) = ̂M(A).

Let A be a commutative Banach algebra. Consider the Gelfand mapping

A → Cb(Δ(A)) a �→ â,

where â is the Gelfand transform of a, defined as â(ϕ) = ϕ(a) (ϕ ∈ Δ(A)). The commutative Banach 
algebra A is called semisimple if its Gelfand mapping is injective, or equivalently⋂

ϕ∈Δ(A)

ker(ϕ) = {0}.

Note that every semisimple commutative Banach algebra is without order. Now let Φ : Δ(A) → C be a 
continuous function such that Φ · Â ⊆ Â. We call Φ a multiplier of A. In fact, it is another definition of a 
multiplier of a Banach algebra. Let

M(A) = {Φ : Δ(A) → C : Φ is continuous and Φ · Â ⊆ Â}.
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In the presence of semisiplicity, this definition of multiplier is equivalent to the above definition, by con-
sidering Φ = T̂ . In fact, ̂M(A) = M(A); see [17, p. 30] for more details. Thus a semisimple commutative 
Banach algebra A has the BSE-property if and only if

CBSE(Δ(A)) = M(A).

Let (eα)α∈I be a bounded net in a commutative Banach algebra A, satisfying the condition

lim
α

ϕ(aeα) = ϕ(a),

for all a ∈ A and ϕ ∈ Δ(A). Then (eα)α∈I is called a bounded Δ-weak approximate identity for A, in 
the sense of Jones-Lahr; see [8]. In [21, Corollary 5], the authors proved that A has a bounded Δ-weak 
approximate identity if and only if

̂M(A) ⊆ CBSE(Δ(A)).

It follows that all BSE-algebras possess a bounded Δ-weak approximate identity.
Let (X, d) be a metric space, A be a Banach algebra and α > 0. Then a map f : X → A is called bounded 

if

‖f‖∞ = sup
x∈X

‖f(x)‖ < ∞.

Recall from [5] and [6] that the Lipschitz constant of f is defined as

ρα(f) = sup
x�=y

‖f(x) − f(y)‖
d(x, y)α .

Furthermore, the vector-valued Lipschitz algebra Lipα(X, A) is the space consisting of all bounded maps 
f : X → A such that ρα(f) < ∞. Moreover, Lipα(X, A) is a Banach algebra, equipped with the norm

‖f‖α = ρα(f) + ‖f‖∞

and pointwise product. For convenience, throughout the paper we write Lip(X, A) instead of Lip1(X, A).
In [15, Example 6.1], Kaniuth and Ülger proved that LipαK, (0 < α ≤ 1), the Banach algebra of all 

complex-valued Lipschitz maps on a compact metric space (K, d) is a BSE algebra.
In this paper, we study the BSE-property for vector-valued Lipschitz algebra Lipα(K, A).
In section 2, we first study some basic properties of vector-valued Lipschitz algebra Lipα(X, A), inherited 

from A, where (X, d) is a metric space and α > 0. These results will be used in the rest of the paper.
In section 3, we prove that the BSE-property of A is guaranteed by the BSE-property of Lipα(K, A), 

where (K, d) is a compact metric space and 0 < α ≤ 1. Then we investigate the reverse implication and show 
that whenever A is unital, Lipα(K, A) is a BSE algebra if and only if A is a BSE algebra. This provides 
examples of Banach algebras A, for which Lipα(K, A) are not BSE-algebras. These examples justify the 
necessity of carrying out the present study.

2. Some basic properties of Lipα(X, A)

In this section, we prove some primary, basic results and properties related to vector-valued Lipschitz 
algebras. Throughout the paper, fa : X → A (a ∈ A) is the constant function on X, defined as fa(x) = a

(x ∈ X). All these functions belong to Lipα(X, A) and ‖fa‖α = ‖fa‖∞ = ‖a‖.
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Proposition 2.1. Let (X, d) be a metric space, A be a commutative Banach algebra and α > 0. Then 
Lipα(X, A) is without order if and only if A is without order.

Proof. Let A be without order and take a nonzero f ∈ Lipα(X, A). Thus there exists x0 ∈ X such that 
f(x0) 	= 0. Since A is without order, there exists b ∈ A such that

f(x0)b 	= 0.

Consider the constant function fb on X. Then

(ffb)(x0) = f(x0)fb(x0) = f(x0) b 	= 0

and so ffb 	= 0. It follows that Lipα(X, A) is without order.
Conversely, suppose that Lipα(X, A) is without order and take a ∈ A with a 	= 0. By the hypothesis, 

there exists g ∈ Lipα(X, A) such that (fag)(x0) 	= 0, for some x0 ∈ X. By taking b = g(x0), we obtain 
ab 	= 0. Therefore A is without order. �
Proposition 2.2. Let (X, d) be a metric space, A be a commutative Banach algebra and α > 0. Then 
Lipα(X, A) separates the points of X if and only if LipαX separates the points of X.

Proof. Suppose that LipαX separates the points of X and x, y ∈ X with x 	= y. Then there exists f ∈ LipαX

such that f(x) 	= f(y). Choose a nonzero a ∈ A and define g(x) = f(x)a (x ∈ X). Then g ∈ Lipα(X, A)
and g(x) 	= g(y).

Conversely, suppose that Lipα(X, A) separates the points of X and take x, y ∈ X with x 	= y. Thus there 
exists f ∈ Lipα(X, A) such that f(x) 	= f(y). Define g ∈ LipαX as g(t) = ‖f(t) − f(y)‖ (t ∈ X). Then

sup
s,t∈X

|g(s) − g(t)|
d(s, t)α = sup

s,t∈X

| ‖f(s) − f(y)‖ − ‖f(t) − f(y)‖ |
d(s, t)α

≤ sup
s,t∈X

‖f(s) − f(t)‖
d(s, t)α

= pα(f) < ∞,

which implies that g ∈ LipαX. Moreover, g(y) = 0 whereas

g(x) = ‖f(x) − f(y)‖ 	= 0.

This completes the proof. �
Remark 2.3. Note that if (X, d) is a metric space and 0 < α ≤ 1, then LipαX always separates the points 
of X; see [20, Lemma 3.1], for the proof of the case α = 1. But this is not true for α > 1. For example, 
consider R equipped with the usual Euclidean metric. Then LipαR = Cons(R), the space consisting of all 
constant functions on R, which does not separate the points of R.

Proposition 2.2 together with Remark 2.3 yield the following result.

Corollary 2.4. Let (X, d) be a metric space, A be a commutative Banach algebra and 0 < α ≤ 1. Then 
Lipα(X, A) separates the points of X.
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Recall from [6, Theorem 2.9] and also [5, Corollary 2.3] that for a compact metric space (K, d), a com-
mutative Banach algebra A and 0 < α ≤ 1 we have

Δ(Lipα(K,A)) = K × Δ(A).

Precisely, every character on Lipα(K, A) is of the form (x, ϕ) := ϕ ◦δx, where ϕ and x run into Δ(A) and K, 
respectively and

(x, ϕ)(f) = ϕ ◦ δx(f) = ϕ(f(x)) (f ∈ Lipα(K,A)).

Remark 2.5. It is worth to note that for any compact metric space (K, d) and 0 < α ≤ 1, the function dα

defines a metric on K. Furthermore,

Lip((K, dα),A) = Lipα((K, d),A).

Thus from now to the end of the paper, we may assume without loss of generality that α = 1.

Proposition 2.6. Let (K, d) be a compact metric space and A be a commutative Banach algebra. Then 
Lip(K, A) has a bounded Δ-weak approximate identity if and only if A has one.

Proof. Let (fα)α∈I be a bounded Δ-weak approximate identity for Lip(K, A). Then for each x ∈ K, the 
net (fα(x))α∈I is clearly a bounded Δ-weak approximate identity for A.

Conversely, suppose that A has a bounded Δ-weak approximate identity, denoted by (eα)α∈I . For any 
α ∈ I, consider the Lipschitz function fα := feα . Then it is easily verified that the net (fα)α∈I is a bounded 
Δ-weak approximate identity for Lip(K, A). �
Proposition 2.7. Let (K, d) be a compact metric space and A be a commutative Banach algebra. Then A is 
semisimple if and only if Lip(K, A) is semisimple.

Proof. Suppose that A is semisimple and take f, g ∈ Lip(K, A) such that f 	= g. So there exists x0 ∈ K

such that f(x0) 	= g(x0). Since A is semisimple, there exists ϕ ∈ Δ(A) such that

ϕ(f(x0)) 	= ϕ(g(x0)).

It follows that

(x0, ϕ)(f) 	= (x0, ϕ)(g).

Thus Δ(Lip(K, A)) separates the points of Lip(K, A) and so Lip(K, A) is semisimple. For the reverse 
implication, suppose that Lip(K, A) is semisimple and take a, b ∈ A such that a 	= b. Thus fa 	= fb and by 
the hypothesis, there exist x ∈ K and ϕ ∈ Δ(A) such that

(x, ϕ)(fa) 	= (x, ϕ)(fb).

It follows that

ϕ(a) = ϕ(fa(x)) 	= ϕ(fb(x)) = ϕ(b).

Consequently, Δ(A) separates the points of A and so A is semisimple. �
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3. The BSE-property for Lip(K, A)

In this section we investigate the problem how the BSE-properties of the algebras A and Lip(K, A) are 
related to each other.

Theorem 3.1. Let (K, d) be a compact metric space and A be a commutative semisimple Banach algebra 
such that Lip(K, A) is a BSE-algebra. Then A is a BSE-algebra.

Proof. Let Lip(K, A) be a BSE-algebra. By [21, Corollary 5] and Proposition 2.6 A has a bounded Δ-weak 
approximate identity and so

̂M(A) ⊆ CBSE(Δ(A)).

To prove the reverse of this inclusion, take σ ∈ CBSE(Δ(A)) and a0 ∈ A. It is enough to detect an element 
b0 ∈ A such that σ â0 = b̂0. Define the function σ1 : K × Δ(A) → C, as

σ1(x, ϕ) = σ(ϕ),

for all x ∈ K and ϕ ∈ Δ(A). For every finite number of complex numbers c1, · · · , cn and the same number 
of (x1, ϕ1), · · · , (xn, ϕn) in K × Δ(A) we have∣∣∣∣∣∣

n∑
j=1

cjσ1(xj , ϕj)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∑

j=1
cjσ(ϕj)

∣∣∣∣∣∣
≤ ‖σ‖BSE

∥∥∥∥∥∥
n∑

j=1
cjϕj

∥∥∥∥∥∥
A∗

= ‖σ‖BSE sup
‖a‖≤1

∣∣∣∣∣∣
n∑

j=1
cjϕj(a)

∣∣∣∣∣∣
= ‖σ‖BSE sup

‖fa‖1≤1

∣∣∣∣∣∣
n∑

j=1
cj(xj , ϕj)(fa)

∣∣∣∣∣∣
≤ ‖σ‖BSE sup

‖f‖1≤1

∣∣∣∣∣∣
n∑

j=1
cj(xj , ϕj)(f)

∣∣∣∣∣∣
= ‖σ‖BSE

∥∥∥∥∥∥
n∑

j=1
cj(xj , ϕj)

∥∥∥∥∥∥
(Lip(K,A))∗

.

It follows that σ1 ∈ CBSE(Δ(Lip(K, A))). Since Lip(K, A) is a BSE-algebra and fa0 ∈ Lip(K, A), there 
exists g ∈ Lip(K, A) such that σ1 f̂a0 = ĝ. It follows that

σ1(x, ϕ) ϕ(fa0(x)) = ϕ(g(x)),

for all x ∈ X and ϕ ∈ Δ(A) and so

σ(ϕ)ϕ(a0) = ϕ(g(x)). (3.1)
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Then the equality (3.1) implies that

ϕ(g(x)) = ϕ(g(y)) (x, y ∈ K).

The simplicity of A implies that g is a constant function, as g = fb0 , for some b0 ∈ A. Thus for all x ∈ K

and ϕ ∈ Δ(A) we have

σ(ϕ)â0(ϕ) = ϕ(g(x)) = ϕ(fb0(x)) = ϕ(b0) = b̂0(ϕ).

Consequently σâ0 = b̂0, which implies σ ∈ M(A), as claimed. �
By Theorem 3.1, Lip(K, A) is not a BSE-algebra, whenever A is not BSE. One can actually construct 

examples of vector-valued Lipschitz algebras, which are not BSE-algebras.

Example 3.2. Let A be the Banach algebra Lp(S, μ) (1 ≤ p < ∞), whenever S is a totally ordered compact 
space with a regular bounded continuous measure μ on S, introduced in [1]. By [12, Theorem 3] and 
Theorem 3.1, Lip(K, A) is not a BSE-algebra.

Let C1[0, 1] be the space, consisting of all differentiable functions with continuous first derivative on [0, 1]. 
Then C1[0, 1] is a unital, semisimple and commutative Banach algebra equipped with the norm

‖f‖c1 = ‖f‖∞ + ‖f ′‖∞

and pointwise product. Note that the character space of C1[0, 1] is homeomorphic with [0, 1]. In fact

Δ(C1[0, 1]) = {ϕx : x ∈ [0, 1]},

where ϕx(f) = f(x) (f ∈ C1[0, 1]).

Proposition 3.3. The Banach algebra C1[0, 1] is not BSE.

Proof. Define the sequence (fn) of functions, belonging to C1[0, 1] as

fn(x) =
(
x− 1

2

)1+ 1
2n−1

(x ∈ [0, 1]).

It is easily verified that for all x ∈ [0, 1]

lim
n→∞

f̂n(ϕx) = lim
n→∞

fn(x) =
∣∣∣∣x− 1

2

∣∣∣∣ = f̂(ϕx),

where f(x) = |x − 1
2 | (x ∈ [0, 1]). Now [21, Theorem 4] implies that f ∈ CBSE(C1[0, 1]). However f is not 

differentiable at x = 1
2. It follows that f /∈ C1[0, 1] and so

CBSE(C1[0, 1]) 	= ̂C1[0, 1].

Therefore C1[0, 1] is not a BSE-algebra. �
The following result is a direct consequence of Theorem 3.1 and Proposition 3.3.
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Corollary 3.4. Let (K, d) be a compact metric space. Then Lip(K, C1[0, 1]) is not a BSE algebra.

In the sequel, we prove the converse of Theorem 3.1, for any unital Banach algebra A. It is clear that A
is unital if and only if Lip(K, A) is unital.

Theorem 3.5. Let (K, d) be a compact metric space and A be a unital commutative semisimple Banach 
algebra. Then A is a BSE-algebra if and only if Lip(K, A) is a BSE-algebra.

Proof. At first let Lip(K, A) be a BSE-algebra. Then by Theorem 3.1, A is a BSE algebra. Conversely, 
suppose that A is a BSE algebra. Since A is unital, [21, Corollary 5] implies that

̂Lip(K,A) = M(Lip(K,A)) ⊆ CBSE(K × Δ(A)).

For the reverse inclusion, take σ ∈ CBSE(K × Δ(A)). By [21, Theorem 4], there exists a net {fλ} ⊆
Lip(K, A), bounded by β > 0, such that

lim
λ

f̂λ(x, ϕ) = σ(x, ϕ) (x ∈ K,ϕ ∈ Δ(A)). (3.2)

We have to find a function g ∈ Lip(K, A) such that σ = ĝ. For each x ∈ K, define σx : Δ(A) → C as

σx(ϕ) = σ(x, ϕ) (ϕ ∈ Δ(A)).

For any finitely many elements ϕ1, · · · , ϕn of Δ(A) and complex numbers c1, · · · , cn, we have∣∣∣∣∣∣
n∑

j=1
cjσx(ϕj)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∑

j=1
cjσ(x, ϕj)

∣∣∣∣∣∣
≤ ‖σ‖BSE

∥∥∥∥∥∥
n∑

j=1
cj(x, ϕj)

∥∥∥∥∥∥
(Lip(K,A))∗

= ‖σ‖BSE sup
‖f‖1≤1

∣∣∣∣∣∣
n∑

j=1
cj(x, ϕj)(f)

∣∣∣∣∣∣
= ‖σ‖BSE sup

‖f‖1≤1

∣∣∣∣∣∣
n∑

j=1
cjϕj(f(x))

∣∣∣∣∣∣
≤ ‖σ‖BSE sup

‖a‖≤1

∣∣∣∣∣∣
n∑

j=1
cjϕj(a)

∣∣∣∣∣∣
= ‖σ‖BSE

∥∥∥∥∥∥
n∑

j=1
cjϕj

∥∥∥∥∥∥
A∗

.

Consequently σx ∈ CBSE(Δ(A)) and also ‖σx‖BSE ≤ ‖σ‖BSE . Since A is a unital BSE-algebra, σx ∈ Â
and so there exists ax ∈ A such that σx = âx. It follows that

σ(x, ϕ) = σx(ϕ) = ϕ(ax), (3.3)
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for all ϕ ∈ Δ(A). Now define the function g : K → A as g(x) := ax. Then g is well defined, by the 
semisimplicity of A. Moreover, g ∈ C(K × Δ(A)). Indeed, by Corollary 6 of [21], there exists positive 
number M such that

M‖ax‖ ≤ ‖âx‖BSE ≤ ‖ax‖. (3.4)

Thus we have

‖g‖∞ = sup
x∈K

‖g(x)‖ = sup
x∈K

‖ax‖ ≤ 1
M

sup
x∈K

‖âx‖BSE

= 1
M

sup
x∈K

‖σx‖BSE ≤ 1
M

‖σ‖BSE < ∞.

Also we have

σ(x, ϕ) = ϕ(g(x)) = ĝ(x, ϕ) ((x, ϕ) ∈ K × Δ(A)). (3.5)

It is enough to show that ρ1(g) < ∞. To that end, take x, y ∈ K with x 	= y. For every finite number of 
complex numbers c1, · · · , cn and the same number of ϕ1, · · · , ϕn ∈ Δ(A) by (3.2) and (3.5) we have∣∣∣∣∣ ̂

(
g(x) − g(y)

)( n∑
i=1

ciϕi

)∣∣∣∣∣
d(x, y) = lim

λ

∣∣∣∣∣ ̂

(
fλ(x) − fλ(y)

)( n∑
i=1

ciϕi

)∣∣∣∣∣
d(x, y) .

Moreover, by (3.4) for any λ we have∣∣∣∣∣ ̂

(
fλ(x) − fλ(y)

)( n∑
i=1

ciϕi

)∣∣∣∣∣
d(x, y) ≤ ‖ ̂fλ(x) − fλ(y)‖BSE

d(x, y)

∥∥∥∥∥
n∑

i=1
ciϕi

∥∥∥∥∥
A∗

≤ ‖(fλ(x) − fλ(y))‖
d(x, y)

∥∥∥∥∥
n∑

i=1
ciϕi

∥∥∥∥∥
A∗

= ρ1(fλ)

∥∥∥∥∥
n∑

i=1
ciϕi

∥∥∥∥∥
A∗

≤ ‖fλ‖1

∥∥∥∥∥
n∑

i=1
ciϕi

∥∥∥∥∥
A∗

≤ β

∥∥∥∥∥
n∑

i=1
ciϕi

∥∥∥∥∥
A∗

.

Consequently

‖ ̂g(x) − g(y)‖BSE

d(x, y) = sup

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣∣∣∣∣ ̂

(
g(x) − g(y)

)( n∑
i=1

ciϕi

)∣∣∣∣∣
d(x, y) :

∥∥∥∥∥
n∑

i=1
ciϕi)

∥∥∥∥∥
A∗

≤ 1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ≤ β.

Again, by inequality (3.4), for any x, y ∈ K with x 	= y, we get
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‖(g(x) − g(y))‖
d(x, y) ≤ ‖( ̂g(x) − g(y))‖BSE

Md(x, y) ≤ β

M
.

This follows that

ρ1(g) ≤
β

M
< ∞

and so g ∈ Lip(K, A). Therefore Lip(K, A) is a BSE algebra. �
Example 3.6. Let G be a non discrete locally compact abelian group. As it is shown in [21], the measure 
algebra M(G) is not a BSE algebra. By Theorem 3.5, the Banach algebra Lip(K, M(G)) is not BSE.
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