JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:332 |
Region of variability of two subclasses of univalent functions | |
Article | |
Ponnusamy, S. ; Vasudevarao, A. | |
关键词: analytic; univalent; close-to-convex; starlike functions; variability region; | |
DOI : 10.1016/j.jmaa.2006.11.019 | |
来源: Elsevier | |
【 摘 要 】
Let F-1 (F-2 respectively) denote the class of analytic functions f in the unit disk vertical bar z vertical bar < I with f (0) 0 = f'(0) - 1 satisfying the condition Re P-f (z) < 3/2 (Re P-f (z) > -1/2 respectively) in vertical bar z vertical bar < 1, where P-f (z) = 1 +zf ''(z)/f'(z). For any fixed z(0) in the unit disk and lambda is an element of [0, 1]),we shall determine the region of variability for log f'(z(0)) when f ranges over the class {f is an element of F-1: f ''(0)= -lambda} and {f is an element of F-2: f ''(0) = 3 lambda}, respectively. (C) 2006 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2006_11_019.pdf | 157KB | download |