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Abstract

Let F1 (F2 respectively) denote the class of analytic functions f in the unit disk |z| < 1 with f (0) =
0 = f ′(0) − 1 satisfying the condition RePf (z) < 3/2 (RePf (z) > −1/2 respectively) in |z| < 1, where
Pf (z) = 1 + zf ′′(z)/f ′(z). For any fixed z0 in the unit disk and λ ∈ [0,1), we shall determine the region of
variability for logf ′(z0) when f ranges over the class {f ∈ F1: f ′′(0) = −λ} and {f ∈ F2: f ′′(0) = 3λ},
respectively.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction and preliminaries

Let D := {z: |z| < 1} be the unit disk in the complex plane C and H denote the space of all
analytic functions on D. Here we think of H as a topological vector space endowed with the
topology of uniform convergence over compact subsets of D. Further, let A := {f ∈ H: f (0) =
f ′(0) − 1 = 0} and S denote the class of univalent functions in A.

A function f ∈ A is called starlike if f (D) is a starlike domain with respect to the origin, and
the class of univalent starlike functions is denoted by S∗. It is called convex if f (D) is a convex
domain. Finally, it is called close-to-convex if there exists a convex (univalent) function g and a
number φ ∈ R such that Re(eiφf ′(z)/g′(z)) > 0 for z ∈ D. Each univalent starlike function f is
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characterized by the analytic condition Re(zf ′(z)/f (z)) > 0 in D. Also, it is known that zf ′ is
starlike if and only if f is convex, and that every close-to-convex function is univalent in D. For
a general reference about these definitions we refer [3,4].

Let F1 (F2 respectively) denote the subclass of locally univalent normalized functions f ∈ A
such that

RePf (z) <
3

2

(
RePf (z) > −1

2
respectively

)
, z ∈ D,

where

Pf (z) = 1 + zf ′′(z)
f ′(z)

, z ∈ D. (1.1)

It is known that (see [7, Eq. (16)] and [8]) F1 ⊂ S∗ and F2 ⊂ K. Here K denotes the class
of all close-to-convex functions. For f ∈ Fj (j = 1,2), we denote by logf ′ the single-valued
branch of the logarithm of f ′ with logf ′(0) = 0. Using the well-known Herglotz representation
for analytic function with positive real part in D, we can write that if f ∈ F1, then there exists a
unique positive unit measure μ on (−π,π] such that

3 − 2

(
1 + zf ′′(z)

f ′(z)

)
=

π∫
−π

1 + ze−it

1 − ze−it
dμ(t).

This easily gives

logf ′(z) =
π∫

−π

log
(
1 − ze−it

)
dμ(t).

It follows that for each fixed z0 ∈ D the region of variability

V1(z0) = {
logf ′(z0): f ∈ F1

}
coincides with the set {log(1 − z): |z| � |z0|}. Similarly if f ∈ F2 then applying the Herglotz
formula we may write

1 + zf ′′(z)
f ′(z)

= −1

2
+ 3

2

π∫
−π

1 + ze−it

1 − ze−it
dμ(t)

from which we can easily deduce that

logf ′(z) = 3

π∫
−π

log

(
1

1 − ze−it

)
dμ(t)

and so for each fixed z0 ∈ D the region of variability V2(z0) = {logf ′(z0): f ∈ F2} coincides
with the set {−3 log(1 − z): |z| � |z0|}.

For our discussion, we need alternate representations for functions in Fj (j = 1,2). Let B0
be the class of analytic functions ω in D such that |ω(z)| � 1 in D and ω(0) = 0. It is a simple
exercise to see that each f in F1 (F2 respectively) has the representation Pf (0) = 1 and

ωf (z) = Pf (z) − 1

P (z) − 2

(
Pf (z) − 1

P (z) + 2
respectively

)
, z ∈ D, (1.2)
f f
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for some ωf (z) ∈ B0, and conversely. A simple application of the Schwarz lemma shows that if
f ∈F1, then |f ′′(0)| = |−w′

f (0)| � 1, whereas if f ∈F2, then one has |f ′′(0)| = |3w′
f (0)| � 3.

One might question the significance of the classes F1 and F2 but on the positive side, we give
a precise description of the region of variability of logf ′(z0) which always is a nice feature. To
make this point precise, for λ ∈ D = {z ∈ C: |z| � 1} and for z0 ∈ D fixed, we define

C1(λ) = {
f ∈F1: f ′′(0) = −λ

}
,

C2(λ) = {
f ∈F2: f ′′(0) = 3λ

}
,

Vj (z0, λ) = {
logf ′(z0): f ∈ Cj (λ)

}
, for j = 1,2.

Recently, the region of variability for functions of bounded derivative and of positive real part has
been discussed in [9]. Also, the region of variability of logf ′(z0) when f ranges over the class
of convex functions f with f ′′(0) = 2λ has been investigated in [10]. See also [3, Exercises 10,
11 and 13 in Chapter 2].

In the present paper we wish to determine explicitly the region of variability Vj (z0, λ) of
logf ′(z0) when f ranges over the class Cj (λ), j = 1,2.

We need some more preparation before we proceed to achieve our goal. For a positive inte-
ger p, let

(S∗)p = {
f = f

p

0 : f0 ∈ S∗}
and recall the following special result.

Lemma 1.3. Let f be an analytic function in D with f (z) = zp + · · · . If

Re

(
z
f ′′(z)
f ′(z)

)
> −1, z ∈ D,

then f ∈ (S∗)p .

Although we could not find any historical reference for a proof of Lemma 1.3, it might be
well known (see [4,5]), and we refer to [9] for an analytic proof of the lemma.

2. Basic properties of V1, V2, and main results

We now begin our discussion with a number of basic properties of the set Vj (z0, λ), j = 1,2.
(1) For each j = 1,2, Vj (z0, λ) is compact. For each j = 1,2, since Cj (λ) is compact subset

of A, it follows that Vj (z0, λ) is compact.
(2) For each j = 1,2, Vj (z0, λ) is convex. Indeed, if f0, f1 ∈ Cj (λ) (j = 1,2) and 0 � t � 1,

then the function

ft (z) =
z∫

0

exp
{
(1 − t) logf ′

0(ζ ) + t logf ′
1(ζ )

}
dζ =

z∫
0

(
f ′

0(ζ )
)1−t(

f ′
1(ζ )

)t
dζ

also belongs to Cj (λ). Since logf ′
t (z0) = (1 − t) logf ′

0(z0) + t logf ′
1(z0), the convexity of

Vj (z0, λ) is evident.
(3) If |λ| = 1 or z0 = 0, then

V1(z0, λ) = {
log(1 − λz0)

}
and V2(z0, λ) = {−3 log(1 − λz0)

}
.
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For |λ| < 1 and z0 �= 0, the set V1(z0, λ) has log(1 − λz0) as an interior point, whereas the set
V2(z0, λ) has −3 log(1 − λz0) as an interior point.

Indeed, if f ∈ F1 and if |λ| = |ω′
f (0)| = 1, then it follows from the Schwarz lemma that

ωf (z) = λz, which implies that

Pf (z) = 1 − 2λz

1 − λz
and logf ′(z) = log(1 − λz)

showing that V1(z0, λ) = {log(1 − λz0)}. This also trivially holds for z0 = 0. Now, for λ ∈ D and
a ∈ D, we introduce

δ(z, λ) = z + λ

1 + λz
, z ∈ D,

Fa,λ(z) =
z∫

0

exp

{ ζ2∫
0

δ(aζ1, λ)

ζ1δ(aζ1, λ) − 1
dζ1

}
dζ2, z ∈ D, (2.1)

Ha,λ(z) =
z∫

0

exp

{ ζ2∫
0

3δ(aζ1, λ)

1 − ζ1δ(aζ1, λ)
dζ1

}
dζ2, z ∈ D. (2.2)

Then it is a simple exercise to see that

1 + zF ′′
a,λ(z)

F ′
a,λ(z)

= 1 − zδ(az,λ)

1 − zδ(az,λ)
= 1 − 2zδ(az,λ)

1 − zδ(az,λ)

from which we can easily conclude that Fa,λ ∈ C1(λ) and

ωFa,λ(z) = zδ(az,λ). (2.3)

For a fixed λ ∈ D and z0 ∈ D \ {0} the function

D � a �→ logF ′
a,λ(z0) =

z0∫
0

δ(aζ,λ)

ζ δ(aζ,λ) − 1
dζ

is a non-constant analytic function of a ∈ D, and hence is an open mapping. To show that D �
a �→ logF ′

a,λ(z0) is non-constant, we let

h(z) = −2

(1 − λ2)

∂

∂a

{
logF ′

a,λ(z)
}∣∣∣∣

a=0
.

We see that

h(z) = 2

z∫
0

ζ

(1 − λζ )2
dζ = z2 + · · ·

so that

1 + zh′′(z)
h′(z)

= 2

1 − λz

and therefore,

Re

{
1 + zh′′(z)

′

}
>

2
> 0, z ∈ D.
h (z) 1 + |λ|
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By Lemma 1.3 there exists h0 ∈ S∗ with h = h2
0. The univalence of h0 and h0(0) = 0 im-

plies that h(z0) �= 0 for all z0 ∈ D \ {0}. Consequently the mapping D � a �→ logF ′
a,λ(z0) is

a non-constant analytic function of a and hence it is an open mapping. It follows now that
logF ′

0,λ(z0) = log(1 − λz0) is an interior point of {logF ′
a,λ(z0): a ∈ D} ⊂ V1(z0, λ).

Similarly, we find that

1 + zH ′′
a,λ(z)

H ′
a,λ(z)

= 1 + 3zδ(az,λ)

1 − zδ(az,λ)
= 1 + 2zδ(az,λ)

1 − zδ(az,λ)

which implies that Ha,λ ∈ C2(λ) and so, we obtain

ωHa,λ(z) = zδ(az,λ).

Now, by defining

g(z) = 2

3(1 − λ2)

∂

∂a

{
logH ′

a,λ(z)
}∣∣∣∣

a=0
= 2

z∫
0

ζ

(1 − λζ )2
dζ

we easily see that for a fixed λ ∈ D and z0 ∈ D \ {0} the function

D � a �→ logH ′
a,λ(z0) =

z0∫
0

3δ(aζ,λ)

1 − ζ δ(aζ,λ)
dζ

is a non-constant analytic function of a ∈ D, and hence is an open mapping. Consequently,
logH ′

0,λ(z0) = −3 log(1 − λz0) is an interior point of {logH ′
a,λ(z0): a ∈ D} ⊂ V2(z0, λ).

(4) For each j = 1,2, we easily obtain that Vj (e
iθ z0, λ) = Vj (z0, e

iθλ) for θ ∈ R. This is a
consequence of the fact that e−iθ f (eiθ z) ∈ Cj (e

iθλ) if and only if f ∈ Cj (λ).
In view of the last property it is sufficient to determine Vj (z0, λ) for 0 � λ < 1 and z0 ∈

D \ {0}. Hence from now onwards, it suffices to consider the classes

C1(λ) = {
f ∈F1: f ′′(0) = −λ

}
(2.4)

and

C2(λ) = {
f ∈F2: f ′′(0) = 3λ

}
(2.5)

only for 0 � λ < 1. In each case, since Vj (z0, λ) is a compact convex subset of C and has non-
empty interior, the boundary ∂Vj (z0, λ) is a Jordan curve and Vj (z0, λ) is the union of ∂Vj (z0, λ)

and its inner domain.
Our main results can now be stated.

Theorem 2.6. For 0 � λ < 1 and z0 ∈ D\ {0}, the boundary ∂V1(z0, λ) is the Jordan curve given
by

(−π,π] � θ �→ logF ′
eiθ ,λ

(z0) =
z0∫

0

δ(eiθ z, λ)

zδ(eiθ z, λ) − 1
dz, z ∈ D. (2.7)

If logf ′(z0) = logF ′
eiθ ,λ

(z0) for some f ∈ C1(λ) and θ ∈ (−π,π], then f (z) = Feiθ ,λ(z). Here
Feiθ ,λ(z) is given by (2.1).
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Theorem 2.8. For 0 � λ < 1 and z0 ∈ D\ {0}, the boundary ∂V2(z0, λ) is the Jordan curve given
by

(−π,π] � θ �→ logH ′
eiθ ,λ

(z0) =
z0∫

0

3δ(eiθ z, λ)

1 − zδ(eiθ z, λ)
dz, z ∈ D. (2.9)

If logf ′(z0) = logH ′
eiθ ,λ

(z0) for some f ∈ C2(λ) and θ ∈ (−π,π], then f (z) = Heiθ ,λ(z). Here
Heiθ ,λ(z) is given by (2.2).

The proof of Theorem 2.6 will be given in Section 3. Since Theorem 2.8 is similar, we omit
its proof although we present the necessary details in Section 4.

3. Region of variability of V1(z0,λ)

Proposition 3.1. For f ∈ C1(λ) we have∣∣∣∣f ′′(z)
f ′(z)

− c(z,λ)

∣∣∣∣ � r(z, λ), z ∈ D, (3.2)

where

c(z,λ) = − λ(1 − |z|2) + z(|z|2 − λ2)

(1 − |z|2)(1 − 2λRe z + |z|2) ,

r(z, λ) = (1 − λ2)|z|
(1 − |z|2)(1 − 2λRe z + |z|2) .

For each z ∈ D \ {0}, equality holds if and only if f = Feiθ ,λ for some θ ∈ R.

Proof. Let f ∈ C1(λ). Then, as pointed out in the introduction, there exists an ωf ∈ B0 such that

ωf (z) = Pf (z) − 1

Pf (z) − 2
, z ∈ D,

where Pf (z) is defined by (1.1). Since ωf ∈ B0 satisfies ω′
f (0) = −f ′′(0) = λ, it follows from

the Schwarz lemma that∣∣∣∣
ωf (z)

z
− λ

1 − λ
ωf (z)

z

∣∣∣∣ � |z| (3.3)

which by the definition of Pf is equivalent to∣∣∣∣
f ′′(z)
f ′(z) − A(z,λ)

f ′′(z)
f ′(z) + B(z,λ)

∣∣∣∣ � |z|∣∣τ(z, λ)
∣∣, (3.4)

where

A(z,λ) = − λ

1 − λz
, B(z,λ) = − 1

z − λ
and τ(z, λ) = z − λ

1 − λz
. (3.5)

A simple calculation shows that the inequality (3.4) is equivalent to∣∣∣∣f ′′(z)
′ − A(z,λ) + |z|2|τ(z, λ)|2B(z,λ)

2 2

∣∣∣∣ � |z||τ(z, λ)||A(z,λ) + B(z,λ)|
2 2

. (3.6)

f (z) 1 − |z| |τ(z, λ)| 1 − |z| |τ(z, λ)|
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Again, a computation shows that

1 − |z|2∣∣τ(z, λ)
∣∣2 = (1 − |z|2)(1 − 2λRe z + |z|2)

|1 − λz|2 , (3.7)

A(z,λ) + B(z,λ) = − 1 − λ2

(1 − λz)(z − λ)
, (3.8)

A(z,λ) + |z|2∣∣τ(z, λ)
∣∣2

B(z,λ) = −λ(1 − |z|2) + z(|z|2 − λ2)

|1 − λz|2 .

Using these, we easily have

A(z,λ) + |z|2|τ(z, λ)|2B(z,λ)

1 − |z|2|τ(z, λ)|2 := c(z,λ)

and

|z||τ(z, λ)||A(z,λ) + B(z,λ)|
1 − |z|2|τ(z, λ)|2 := r(z, λ).

Now the inequality (3.2) follows from the last two equalities and (3.6).
It is easy to see that the equality occurs for any z ∈ D in (3.2), when f = Feiθ ,λ for some θ ∈ R.

Conversely if equality occurs for some z ∈ D \ {0} in (3.2), then equality must hold in (3.3). Thus
from the Schwarz lemma there exists θ ∈ R such that ωf (z) = zδ(eiθ z, λ) for all z ∈ D. This
gives that f = Feiθ ,λ. �

For λ = 0, we have the following interesting information which may be compared with the
known estimate for the class of starlike functions in D.

Corollary 3.9. Let f ∈ C1(0). Then we have∣∣∣∣f ′′(z)
f ′(z)

+ z|z|2
1 − |z|4

∣∣∣∣ � |z|
1 − |z|4 , z ∈ D.

In particular,

(
1 − |z|2)∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣ � |z|, z ∈ D.

We define the norm for locally univalent functions f by

‖f ‖ = sup
z∈D

(
1 − |z|2)∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣.
It is well known that ‖f ‖ � 6 if f is univalent in D, and conversely if ‖f ‖ � 1 then f is univalent
in D, and these bounds are sharp (see [1]). On the other hand, Corollary 3.9 shows that f ∈ C1(0),
then ‖f ‖ � 1. For recent investigations on the quantity ‖f ‖ when f runs over various subclasses
of locally univalent functions, we refer to [2,6].

Corollary 3.10. Let γ : z(t) (0 � t � 1) be a C1-curve in D with z(0) = 0 and z(1) = z0. Then
we have

V1(z0, λ) ⊂ D
(
C(λ,γ ),R(λ, γ )

) = {
w ∈ C:

∣∣w − C(λ,γ )
∣∣ � R(λ,γ )

}
,
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where

C(λ,γ ) =
1∫

0

c
(
z(t), λ

)
z′(t) dt and R(λ,γ ) =

1∫
0

r
(
z(t), λ

)∣∣z′(t)
∣∣dt.

Proof. Let f ∈ C1(λ). Then, we have

1∫
0

f ′′(z(t))
f ′(z(t))

z′(t) dt = logf ′(z0),

and therefore, from Proposition 3.1 we deduce that

∣∣logf ′(z0) − C(λ,γ )
∣∣ =

∣∣∣∣∣logf ′(z0) −
1∫

0

c
(
z(t), λ

)
z′(t) dt

∣∣∣∣∣
=

∣∣∣∣∣
1∫

0

{
f ′′(z(t))
f ′(z(t))

− c
(
z(t), λ

)}
z′(t) dt

∣∣∣∣∣
�

1∫
0

r
(
z(t), λ

)∣∣z′(t)
∣∣dt = R(λ,γ ).

Since logf ′(z0) ∈ V1(z0, λ) was arbitrary, the conclusion follows. �
Lemma 3.11. [10] For θ ∈ R and 0 � λ < 1, the function

G(z) =
z∫

0

eiθ ζ

{1 + λ(eiθ − 1)ζ − eiθ ζ 2}2
dζ, z ∈ D,

has a double zero at the origin and no zeros elsewhere in D. Furthermore, there exists a starlike
univalent function G0 in D such that G = 2−1eiθG2

0 and G0(0) = G′
0(0) − 1 = 0.

Proposition 3.12. Let z0 ∈ D \ {0}. Then for θ ∈ (−π,π] we have logF ′
eiθ ,λ

(z0) ∈ ∂V1(z0, λ).

Furthermore if logf ′(z0) = logF ′
eiθ ,λ

(z0) for some f ∈ C1(λ) and θ ∈ (−π,π], then f = Feiθ ,λ.

Proof. Recall from (2.1)

F ′′
a,λ(z)

F ′
a,λ(z)

= δ(az,λ)

zδ(az,λ) − 1
= az + λ

az2 + λ(1 − a)z − 1
.

Thus we have from (3.5)

F ′′
a,λ(z)

F ′
a,λ(z)

− A(z,λ) = (1 − λ2)az

(1 − λz)(az2 + λ(1 − a)z − 1)
,

F ′′
a,λ(z)

F ′ (z)
+ B(z,λ) = 1 − λ2

(z − λ)(az2 + λ(1 − a)z − 1)
a,λ
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and hence we may rewrite

F ′′
a,λ(z)

F ′
a,λ(z)

− c(z,λ)

= F ′′
a,λ(z)

F ′
a,λ(z)

− A(z,λ) + |z|2|τ(z, λ)|2B(z,λ)

1 − |z|2|τ(z, λ)|2

= 1

1 − |z|2|τ(z, λ)|2
{

F ′′
a,λ(z)

F ′
a,λ(z)

− A(z,λ) − |z|2∣∣τ(z, λ)
∣∣2

(
F ′′

a,λ(z)

F ′
a,λ(z)

+ B(z,λ)

)}

= (1 − λ2){a(1 − λz)z − |z|2(z − λ)}
(1 − |z|2)(1 − 2λRe z + |z|2)(az2 + λ(1 − a)z − 1)

.

Now by substituting a = eiθ we have

F ′′
eiθ ,λ

(z)

F ′
eiθ ,λ

(z)
− c(z,λ) = (1 − λ2)eiθ z{1 + λ(eiθ − 1)z − eiθ z2}

(1 − |z|2)(1 − 2λRe z + |z|2)(1 + λ(eiθ − 1)z − eiθ z2)

= (1 − λ2)eiθ z|1 + λ(eiθ − 1)z − eiθ z2|2
(1 − |z|2)(1 − 2λRe z + |z|2)(1 + λ(eiθ − 1)z − eiθ z2)2

= r(z, λ)
|1 + λ(eiθ − 1)z − eiθ z2|2eiθ z

(1 + λ(eiθ − 1)z − eiθ z2)2|z| .

From Lemma 3.11, we can rewrite the last expression as

F ′′
eiθ ,λ

(z)

F ′
eiθ ,λ

(z)
− c(z,λ) = r(z, λ)

G′(z)
|G′(z)| . (3.13)

Since the function G0 is starlike, for any z0 ∈ D \ {0} the linear segment joining 0 and G0(z0)

lies entirely in G0(D). Define γ0 by

γ0: z(t) = G−1
0

(
tG0(z0)

)
, 0 � t � 1. (3.14)

Since G(z(t)) = 2−1eiθG0(z(t))
2 = 2−1eiθ (tG0(z0))

2 = t2G(z0), we have

G′(z(t))z′(t) = 2tG(z0), t ∈ [0,1]. (3.15)

From this and (3.13) we have

logF ′
eiθ ,λ

(z0) − C(λ,γ0) =
1∫

0

{
F ′′

eiθ ,λ
(z(t))

F ′
eiθ ,λ

(z(t))
− c

(
z(t), λ

)}
z′(t) dt

=
1∫

0

r
(
z(t), λ

) G′(z(t))z′(t)
|G′(z(t))z′(t)|

∣∣z′(t)
∣∣dt

= G(z0)

|G(z0)|
1∫

0

r
(
z(t), λ

)∣∣z′(t)
∣∣dt

= G(z0)
R(λ, γ0). (3.16)
|G(z0)|
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Thus we have logF ′
eiθ ,λ

(z0) ∈ ∂D(C(λ, γ0),R(λ, γ0)). From Corollary 3.10 we have also

logF ′
eiθ ,λ

(z0) ∈ V1(z0, λ) ⊂ D(C(λ, γ0),R(λ, γ0)). Hence we have logF ′
eiθ ,λ

(z0) ∈ ∂V1(z0, λ).

Next, we deal with uniqueness. Suppose that logf ′(z0) = logF ′
eiθ ,λ

(z0) for some f ∈ C1(λ)

and θ ∈ (−π,π]. Introduce

h(t) = G(z0)

|G(z0)|
{

f ′′(z(t))
f ′(z(t))

− c
(
z(t), λ

)}
z′(t),

where γ0: z(t), 0 � t � 1, as in (3.14). Then h(t) is continuous function on [0,1] and satisfies
|h(t)| � r(z(t), λ)|z′(t)| for 0 � t � 1. Furthermore we have from (3.16)

1∫
0

Reh(t) dt =
1∫

0

Re

{
G(z0)

|G(z0)|
{

f ′′(z(t))
f ′(z(t))

− c
(
z(t), λ

)}
z′(t)

}
dt

= Re

{
G(z0)

|G(z0)|
{
logf ′(z0) − C(λ,γ0)

}}

= Re

{
G(z0)

|G(z0)|
{
logF ′

eiθ ,λ
(z0) − C(λ,γ0)

}}

=
1∫

0

r
(
z(t), λ

)∣∣z′(t)
∣∣dt

which gives that h(t) = r(z(t), λ)|z′(t)| for all t ∈ [0,1]. From (3.13) and (3.15) this implies that

f ′′

f ′ =
F ′′

eiθ ,λ

F ′
eiθ ,λ

on the curve γ0. Using the identity theorem for analytic functions, we conclude that the last
equality holds in D and hence, by normalization, we obtain that f = Feiθ ,λ in D. �
Proof of Theorem 2.6. We need to prove that the closed curve (−π,π] � θ �→ logF ′

eiθ ,λ
(z0)

is simple. Suppose that logF ′
eiθ1 ,λ

(z0) = logF ′
eiθ2 ,λ

(z0) for some θ1, θ2 ∈ (−π,π] with θ1 �= θ2.
Then, from Proposition 3.12, we have Feiθ1 ,λ = Feiθ2 ,λ. From (2.3) this gives a contradiction

eiθ1z = τ

(ωF
eiθ1 ,λ

z
, λ

)
= τ

(ωF
eiθ2 ,λ

z
, λ

)
= eiθ2z.

Thus the curve is simple.
Since V1(z0, λ) is a compact convex subset of C and has nonempty interior, the boundary

∂V1(z0, λ) is a simple closed curve. From Proposition 3.1 the curve ∂V1(z0, λ) contains the
curve (−π,π] � θ �→ logF ′

eiθ ,λ
(z0). Note that a simple closed curve cannot contain any simple

closed curve other than itself. Thus, ∂V1(z0, λ) is given by (−π,π] � θ �→ logF ′
eiθ ,λ

(z0). �
4. Region of variability V2(z0,λ)

Proposition 4.1. For f ∈ C2(λ) we have∣∣∣∣f ′′(z)
′ + 3c(z,λ)

∣∣∣∣ � 3r(z, λ), z ∈ D,

f (z)
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where c(z,λ) and r(z, λ) given in Proposition 3.1. For each z ∈ D \ {0}, equality holds if and
only if f = Heiθ ,λ for some θ ∈ R.

Proof. Let f ∈ C2(λ). Then, as stated in the introduction, there exists an ωf ∈ B0 such that

ωf (z) = Pf (z) − 1

Pf (z) + 2
, z ∈ D,

where Pf (z) is defined by (1.1). Since ω′
f (0) = λ, it follows from the Schwarz lemma that

∣∣∣∣
ωf (z)

z
− λ

1 − λ
ωf (z)

z

∣∣∣∣ � |z|

which may be written equivalently as∣∣∣∣
f ′′(z)
f ′(z) + 3A(z,λ)

f ′′(z)
f ′(z) − 3B(z,λ)

∣∣∣∣ � |z| ∣∣τ(z, λ)
∣∣,

where A(z,λ), B(z,λ) and τ(z, λ) are defined by (3.5). The remaining part of the proof follows
exactly in the same lines of the proof of Proposition 3.1 and so, we omit the details. �

For λ = 0, we have the following interesting information which may be compared with the
known estimate for the class of close-to-convex functions in D.

Corollary 4.2. Let f ∈ C2(0). Then we have∣∣∣∣f ′′(z)
f ′(z)

− 3z|z|2
1 − |z|4

∣∣∣∣ � 3|z|
1 − |z|4 , z ∈ D.

In particular,

(
1 − |z|2)∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣ � 3|z|, z ∈ D,

and ‖f ‖ � 3.

Corollary 4.3. Let γ : z(t), 0 � t � 1, be a C1-curve in D with z(0) = 0 and z(1) = z0. Then we
have

V2(z0, λ) ⊂ D
(−3C(λ,γ ),3R(λ,γ )

) = {
w ∈ C:

∣∣w + 3C(λ,γ )
∣∣ � 3R(λ,γ )

}
,

where C(λ,γ ) and R(λ,γ ) are defined in Corollary 3.10.

Proof. Proof exactly follows from Proposition 4.1 using the method of proof of Corol-
lary 3.10. �

Finally, we state the following result which can proved with the help of the proof of Proposi-
tion 3.12.

Proposition 4.4. Let z0 ∈ D \ {0}. Then for θ ∈ (−π,π] we have logH ′
eiθ ,λ

(z0) ∈ ∂V2(z0, λ).

Furthermore if logf ′(z0) = logH ′
eiθ ,λ

(z0) for some f ∈ C2(λ) and θ ∈ (−π,π], then f = Heiθ ,λ.
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