期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:338
Strong convergence theorems for nonexpansive semigroup in Banach spaces
Article
关键词: nonexpansive semigroup;    viscosity approximation methods;    reflexive and strictly convex Banach space;    Chebyshev set;   
DOI  :  10.1016/j.jmaa.2007.05.021
来源: Elsevier
PDF
【 摘 要 】

Let K be a nonempty closed convex subset of a reflexive and strictly convex Banach space E with a uniformly Gateaux differentiable norm, and F = {T (t): t > 0) a nonexpansive self-mappings semigroup of K, and f : K -> K a fixed contractive mapping. The strongly convergent theorems of the following implicit and explicit viscosity iterative schemes {x(n)} are proved. x(n) = alpha(n)f(x(n)) + (1 - alpha(n))T(t(n))x(n), x(n+1) = alpha(n)f(x(n)) + (1 - alpha(n))T(t(n))x(n). And the cluster point of {x(n)} is the unique solution to some co-variational inequality. (c) 2007 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2007_05_021.pdf 160KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次