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Abstract
Let K be a nonempty closed convex subset of a reflexive and strictly convex Banach space E with a uniformly Gateaux differ-
entiable norm, and F = {7 (¢): t > 0} a nonexpansive self-mappings semigroup of K, and f: K — K a fixed contractive mapping.
The strongly convergent theorems of the following implicit and explicit viscosity iterative schemes {x, } are proved.
Xn =op f(xn) + (1 — )T (tn)xn,
Xpa1 =0an f(xp) + (L —an)T (tn)xn-

And the cluster point of {x;} is the unique solution to some co-variational inequality.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let E be a Banach space and let K be a nonempty closed convex subset of E. A (one-parameter) nonexpansive
semigroup is a family F = {T (¢): t > 0} of self-mappings of K such that

(1) TO)x =x forx € K;

() Tt +s)x=T@)T(s)x fort,s >0and x € K;
(iii) lim;—o T (t)x = x for x € K;;
(iv) for eacht > 0, T'(¢) is nonexpansive, that is,

|T@x =T@y| <llx=yll, VYx,yekK.
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We shall denote by F the common fixed point set of F, that is,

F:=Fix(F)={xeK: T()x=x, t >0} = ﬂFix(T(t)).
t>0
(Here Fix(T) = {x € C: Tx = x} is the set of fixed points of a mapping 7'.)

Let T: K — K be a nonexpansive mapping (thatis, |7Tx — Ty|| < ||x — y| for all x, y € K). Assume that the fixed
point set Fix(T) of T is nonempty. One classical method to study nonexpansive mappings is to use contractions to
approximate nonexpansive mappings. More precisely, for a fixed point u# € K, define for each 0 < ¢ < 1, a contraction
T; by Tix =tu+ (1 —1t)Tx, x € K. Let x; be the fixed point of 7; obtained by Banach contraction mapping principle.
Thus,

x =tu+(1—0Tx. (1.1)

Browder [4] (Reich [9], respectively) proves that as ¢t — 0, x; converges strongly to a fixed point of T in a Hilbert
space (uniformly smooth Banach space, respectively). Halpern [6] firstly introduced the following explicit iterative
scheme (1.2) in Hilbert space,

Xpt1 =0opu + (1 — o) Txp. (1.2)

He pointed out that the control conditions (C1) and (C2) are necessary for the convergence of the iteration scheme
(1.2) to a fixed point of T'.

(C1) limy— 00 ap =0,
(C2) Y2 ap =00.

In 1992, Wittmann [24], still in Hilbert space, obtained a strong convergence result [24, Theorem 2] for the iteration
scheme (1.2) under the control conditions (C1), (C2) and

(C3) Y02 loty — 1| < 00

Shioji and Takahashi [11] extended Wittmann’s results to a uniformly convex Banach space with a uniformly
Gateaux differentiable norm. In 2004, for 7 : K — K a nonexpansive mapping with F(T) ##,and f : K — K a
fixed contractive mapping, H.K. Xu [20] proposed the following viscosity iterative process {x,}:

Xp1 =y [ (xn) + (1 — o) Txy, (1.3)
and prove that {x,} converges to a fixed point p of 7 in a uniformly smooth Banach space. (Related results can be
found in [7,12-15].)

Itis an interesting problem to extend above (Browder’s, Halpern’s and so on) results to the nonexpansive semigroup
case. However, only partial answers have been obtained. In [10], Shioji and Takahashi introduced the implicit iteration
(1.4) in a Hilbert space,

Xp =apu+ (1 —ay)o, (x,), n=1, (1.4)

where {¢;,} is a sequence in (0, 1), and {#,} is a sequence of positive real numbers divergent to co, and for each 7 > 0
and x € C, o;(x) is the average given by
t
1
or(x) = " T(s)xds.
0
Under certain restrictions to the sequence {«,}, Shioji and Takahashi [11] prove the strong convergence of {x,} to a
member of F. (See also Xu [22].) Recently, Chen and Song [5] introduced the following implicit and explicit viscosity
iteration processes defined by (1.5) and (1.6) to nonexpansive semigroup case,
Xn =t f (xn) + (I —ap)oy, (xp), n=1, (1.5)
Xn1 =n [ (Xn) + (A —an)oy, (xp), n=1 (1.6)
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And proved that {x,} converges to a same point of F in a uniformly convex Banach space with a uniformly Gateaux
differentiable norm.

Note however that their iterate x,, at step n is constructed through the average of the semigroup over the interval
(0, ). Suzuki [16] is the first to introduce again in a Hilbert space the following implicit iteration process:

Xp=0opu+ (1 —o)T ()X, n>1, (1.7)

for the nonexpansive semigroup case.
In 2002, Dominguez Benavides, Lopez Acedo and Xu [3] in a uniformly smooth Banach space, showed that if F
satisfies an asymptotic regularity condition and «,, fulfills the control conditions (C1) and (C2) and

(C4) limy o0 3= =1,

On+1

then both the implicit iteration process (1.7) and the explicit iteration process (1.8) converge to a same point of F (cf.
the discussion in [1,2]).

Xpag =apu+ (1 —ap)T(ty)x,, n>1. (1.8)

Recently, Xu [21] studied the strong convergence of the implicit iteration process (1.4) and (1.7) in a uniformly convex
Banach space which admits a weakly sequentially continuous duality mapping.

In this paper, under the framework of a reflexive and strictly convex Banach space with a uniformly Gateaux
differentiable norm, we will study the convergence of the following implicit and explicit viscosity iterative schemes:

Xn =0nf(xn) + (1 —an)T (E)xn, n=1, (1.9)
Xn+1 =anfxn)+ A —a)T(t)xn, n=>1. (1.10)

Our work improves and generalizes some of the results obtained in the above paper. In particular, our results extend
the main results of Chen and Song [5] to a uniformly convex Banach space with a uniformly Gateaux differentiable
norm. At the same time, the main conclusions of Dominguez Benavides, Lépez Acedo and Xu [3], Aleyner and Censor
[1, Theorem 20], Aleyner and Reich [2, Theorem 3.1] are not only proved in more generalized Banach space, but the
control condition (C4) or (C3) for the iterative coefficient ¢, is removed also.

2. Preliminaries

Throughout this paper, let J denote the normalized duality mapping from E into 2 : given by
J)={feE* (x, y=IxIfIl, IxI= 1/}, Vx€E,

where E* denotes the dual space of E and (-,-) denotes the generalized duality pairing. In the sequel, we shall denote
the single-valued duality mapping by j. When {x,} is a sequence in E, then x, — x (respectively x,, — x, x, — X)
will denote strong (respectively weak, weak™) convergence of the sequence {x,} to x.

Recall that the norm of Banach space E is said to be Gdteaux differentiable (or E is said to be smooth), if the limit
Ayl =l
m—"t-7n N

li
t—0 1

()

exists for each x, y on the unit sphere S(E) of E. Moreover, if for each y in S(E) the limit defined by (x) is uniformly
attained for x in S(E), we say that the norm of E is uniformly Gdateaux differentiable. The norm of E is said to
be Fréchet differentiable, if for each x € S(E), the limit (x) is attained uniformly for y € S(E). The norm of E is
said to be uniformly Fréchet differentiable (or E is said to be uniformly smooth), the limit (x) is attained uniformly
for (x,y) € S(E) x S(E). A Banach space E is said to strictly convex if M <1 for x|l =lyll=1, x #y;

uniformly convex if for all ¢ € [0, 2], 35, > 0 such that w <1—=36, for ||x||=|yll=1and ||x — y|| > e. Itis well
known that each uniformly convex Banach space E is reflexive and strictly convex [18, Theorems 4.1.6, 4.1.2], and
every uniformly smooth Banach space E is a reflexive Banach space with uniformly Gateaux differentiable norm [18,
Theorems 4.3.7, 4.1.6] (also see [8]).
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Lemma 2.1. (See [18, Theorems 4.3.1, 4.3.2].) E is a smooth Banach space if and only if the normal duality mapping
J in E is single valued. Moreover, for x,y € E,

Ny el Ed &
o 100) = iy P

Now, we present the concept of uniformly asymptotically regular semigroup (also see [1-3]). Let K be a nonempty
closed convex subset of a Banach space E, F = {T (¢): ¢t > 0} a continuous operator semigroup on K. Then F is said
to be uniformly asymptotically regular (in short, u.a.r.) on K if for all 2 > 0 and any bounded subset C of K,

Jim sup |7(h) (7 (1)x) = T (x| =o0.

The nonexpansive semigroup {o;: t > 0} defined by the following lemma is an example of u.a.r. operator semi-
group. Other examples of u.a.r. operator semigroup can be found in [1, Examples 17, 18].

Lemma 2.2. (See [5, Lemma 2.7].) Let K be a nonempty closed convex subset of a uniformly convex Banach space E,
and D a bounded closed convex subset of K, and F = {T (t): t > 0} a nonexpansive semigroup on K such that
F .= ﬂ,>0 Fix(T (t)) is nonempty. For each h > 0, set 0:(x) = %fot T (s)xds, then

Jlim sup|o;(x) = T (o ()| =0.
—®xeD

Example. The set {o;: r > 0} defined by Lemma 2.2 is an u.a.r. nonexpansive semigroup. In fact, it is obvious that
{o;: t > 0} is a nonexpansive semigroup. For each fixed / > 0, we have

h

1
Wmm—%muW=HE/®mw—Tmmu»w

0

h
1
<3 [low = 10| as.
0

Therefore, using Lemma 2.2,
. h
lim sup |o;(x) — ooy (x) || < —/ lim sup||o;(x) — T(s)o: (x) | ds = 0.
t—00,cp ho 1= cp

Finally, we also need the following definitions and results [17,18]. Let u be a continuous linear functional on [*®
satisfying |||l = 1 = u(1). Then we know that w is a mean on N if and only if

inf{a,; n € N} < pu(a) < supfay; n € N}
forevery a = (ay, az, ...) € [°°. Occasionally, we shall use u, (a,) instead of p(a). A mean p on N is called a Banach
limit if

Mn(an) = n(any1)

for every a = (ay, az, ...) € [*°. Using the Hahn—Banach theorem, or the Tychonoff fixed point theorem, we can prove
the existence of a Banach limit. We know that if ¢ is a Banach limit, then

liminfa, < w,(a,) <limsupa,
n—>oo n—00

forevery a = (ay, az,...) € (. So,ifa = (a1, a3, ...),b = (b1, b2, ...) €* and a,, — c (respectively, a, — b, — 0),
as n — 00, we have

Un(ay) =ua)=c (respectively, Un(an) = tn (bn)).
Subsequently, the following result was showed in Refs. [17, Lemma 1] and [18, Lemma 4.5.4].
Lemma 2.3. (See [17, Lemma 1].) Let K be a nonempty closed convex subset of a Banach space E with a uniformly

Gateaux differentiable norm, and {x,} a bounded sequence of E. If zo € K, then

2 . 2
M llXn — zoll” = min ||l x, — yl|
yekK
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if and only if
tnly — 20, J (X —20)) <0, VyeK.

3. Implicit iteration scheme

In order to prove the strong convergence of the iterative process (1.9), we first apply the property of Chebyshev set
to show the following proposition.

Let (M, d) a metric space. A subset A of M is called a Chebyshev set, if for each x € M, there exists an unique
element y € A such that d(x, y) =d(x, A), where d(x, A) =infyes d(x, y).

Day-James Theorem. (See [8, Theorem 5.1.18, Corollary 5.1.19].) E is a reflexive strictly convex Banach space if
and only if every nonempty closed convex subset of E is a Chebyshev set.

Proposition 3.1. Let E be a reflexive strictly convex Banach space with a uniformly Gdteaux differentiable norm, and
K a nonempty closed convex subset of E. Suppose x,, is a bounded sequence in K such that limy,_, o || x, — Tx, || =0,
an approximate fixed point of nonexpansive self-mapping T on K. Define the set

K*={x € K: pallxy —xII* = inf pullxy — ylI*}.
yekK
If Fix(T) # 0, then K* N Fix(T) # @.

Proof. Set g(y) = |lx, —y||>, Vy € K, then g(y) is a convex and continuous function, and g(y) — oo as ||y|| — oo.
Using [18, Theorem 1.3.11], there exists x € K such that g(x) = infycg g(y) by the reflexivity of E, that is, K* is
nonempty. Clearly, K* is closed convex by the convexity and continuity of g(y).

Since lim,_, o0 ||X, — Tx, || =0, for Vx € K*, we get that

g(Tx) = ppllxny — Tx|I> = o | Txp — Tx|* < pn |0 — x[1* = g(x).

Hence, Tx € K*. As x is arbitrary, then T (K*) C K*.
Let p € Fix(T). It follows from Day—James’s theorem that there exists an unique v € K* such that

—vl| = inf —x|.
Ip = vll = inf lIp—x]
Since p=Tp and Tv € K*,
lp=Tvl=ITp—-Tvl<|p—vl.
Hence v = T'v by the uniqueness of v € K*. Thus v € K* N Fix(T'). This completes the proof. O
Theorem 3.2. Let E be a real reflexive strictly convex Banach space with a uniformly Gdteaux differentiable norm,
and K a nonempty closed convex subset of E, and {T (t)} a u.a.r. nonexpansive semigroup from K into itself such

that F = Fix(F) = ()20 Fix(T(t)) # @, and f:K — K a fixed contractive mapping with contractive coefficient
B € (0, 1). Suppose lim,,_, » t,, = 00 and «,, € (0, 1) such that lim,_, 5 &t;, = 0. If {x,,} is defined by

Xp =0 fxp) + A —a)T t)x,, n=1.

Then as n — 00, {x,} converges strongly to some common fixed point p of F such that p is the unique solution in F
to the following co-variational inequality:

(f(p)=p.J(y—p)) <O forallyeF. 3.1

Proof. We first show that the uniqueness of solution to the variational inequality (3.1) in F'. In fact, suppose p,q € F
satisfy (3.1), we have that

(f(p)=p.J(q—p))<0, (3.2)
(f@)—q.J(p—q)<0. (3.3)
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Combining (3.2) and (3.3), it follows that
A=Plr—aql*<{(p—9)— (fP)— f@). J(p—q)<0.

We must have p = ¢ and the uniqueness is proved.
Now we show the boundedness of {x,}. Indeed, for any fixed y € F,

llxn — y1I?
= (ot (f ) = ¥) + (L = &) (T ()0 — ), T (tw — )
=an(fn) = FO)+ F) =y, Jtn — ) + (L= )T @) xn — T(0)y, T (xn — ¥))
San | f@n) = FO| T Gn =2 | +anlf ) = . Tn — )+ (1 =) | T@)xn = T @)y ||| G = 3) |
< (1= (1 = Byan) 20 — YI* + (£ () = ¥, T (xn — ¥))-

Therefore,

1 1
2, — yII* < m(f(y) =y, J (=) < me(y) = y[[llxn = yII. (3.4)

Furthermore,

1
b =1 < =51/ =1
Thus {x,} is bounded, and so are {7 (t,)x,} and { f (x,)}. This implies that
lim |x, — T(ta)xa|| = lim o, |T(t)x, — f(x)| =0.
n— o0 n—o0

Since {7 (¢)} is u.a.r. nonexpansive semigroup and lim,,_, » f, = 00, then for all # > 0,
lim |7 (h)(T (t)xn) — T (t)xn | < lim sup | T ()(T (tn)x) — T (t,)x | =0,
n— o0 n—)OOxEC
where C is any bounded subset of K containing {x,}. Hence,
|0 = T x| < xn = T W2 | + | T @doen = T (T @)xn) | + | T (T t)xn) = T () x|
<2||xn = T@)xa | + | T A(T @) xn) — T (8)xn | — 0.
That is, for all 2 > 0,
lim |x, — T (h)x, || =0. (3.5)
n— o0
We claim that the set {x,} is sequentially compact. Indeed, define the set
K*={x e K: il = xll = inf uallx = v1}.
yek
By Proposition 3.1, we can found p € K* such that p = T (h)p. Since h is arbitrary, it follows that p € F. Using
Lemma 2.3 together with p € K*, we get that
tnly = p. J(xn — p)) <0, VyeK.

From (3.4), we have

1
tnllxn — plI* < qun(f(p) — p, J(xa — p)) <0,
ie.
tnllxp — pll =0.

Hence, there exists a subsequence {x,,} of {x,} which strongly converges to p € F' as k — oo.
Next we show that p is a solution in F to the variational inequality (3.1). In fact, for any fixed y € F, there exists
a constant M > 0 such that ||x, — y|| < M, then
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I3 — Y11 = ot f (n) — F(P) + P — X, T Ctw — V) + ot f (V) = p, T (tn — ) + etnlxn — y. I (X0 — ¥))
+ (1 — )T t)xn = T 1)y, J (xn — ¥))
<A+ BanMxy — vl +an(f(p) = p, J (xn — ) + 130 — 2

Therefore,

(f(p) = p. Iy = x)) <A+ BM]lxn = pl. (3.6)
Since the duality mapping J is single-valued and norm topology to weak™ topology uniformly continuous on any
bounded subset of a Banach space E with a uniformly Gateaux differentiable norm, we have

(f(2) = p. T = x0)) = (f(P) = p. T (v —v)).

Taking limit as ny — oo in two sides of (3.6), we get

(f(p)—p.J(y—p)) <0 VyeF.

This is, p € F is a solution of the variational inequality (3.1). From this we conclude that p € F is the unique solution
of the variational inequality (3.1). In a similar way it can be show that each cluster point of the sequence {x,} is equal
to p. Therefore, the entire sequence {x,} converges to p and the proof is complete. O

Corollary 3.3. Let E be an uniformly convex Banach space with a uniformly Gdteaux differentiable norm, and K,
f, tn, oy be as Theorem 3.2. Assumed {T (t)} a nonexpansive semigroup from K into itself such that F := Fix(F) =
(N0 Fix(T (1)) # 9, and {x,} given by

In
xnzanf(xn)+(1_Oln)ti/T(s)Xd&

0

Then as n — 00, {x,} converges strongly to some common fixed point p of F such that p is the unique solution in F
to the co-variational inequality (3.1).

Remark 3.4. The conclusion of Theorem 3.2 still holds if E is assumed to have the fixed point property for nonexpan-
sive self-mappings instead of to be a strictly convex space. In fact, the same proof works (remains valid) disregarding
of Proposition 3.1. In particular, when E is an uniformly smooth Banach space and therefore, when f(x) = u for all
x € K, our result contains Theorem 3.1 in [3].

4. Explicit iterative scheme
In order to prove our main result we will need the following numerical lemma (see, e.g., [10-14,19-21,23]).

Lemma 4.1. (See [23, Lemma 2.5].) Let {a,} be a sequence of nonnegative real numbers satisfying the property
any1 < (1 —ypay +Br, n=0,

where {y,} C (0, 1) and {B,} is real number sequence such that

(D) X pZovn =00
(mnmmm%w%QO

Then {a,} converges to zero, as n — oo.

Theorem 4.2. Let E be a real reflexive strictly convex Banach space with a uniformly Gdteaux differentiable norm,
and K a nonempty closed convex subset of E, and {T (t)} a u.a.r. nonexpansive semigroup from K into itself such
that F := Fix(F) # 0, and f:K — K a fixed contractive mapping with contractive coefficient B € (0, 1). Suppose
lim,, oo t, = 00 and oy € (0, 1) such that lim,_. o ¢, = 0 and ZZOZI o = oo. If {x,} is given by the following
equation
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Xpp1 = f(xp) + (1 —ap)T (t)x,, n=1. 4.1)

Then as n — oo, {x,} converges strongly to some common fixed point p of F such that p is the unique solution in F
to the co-variational inequality (3.1).

Proof. Firstly, we show that {x,} is bounded. Take u € F. It follows that
lotn1 — ull < (1 —an) | T(t)xn — ul| + o | £ (xn) — u|
<A —ap)llxn — ull + e (Bllxn —ull + || £ ) —ul)
= (1= (1= Ban)llxny —ull +otn | fu) —ul

1
<max{||xn —ul, q\\f(u) —uH}

. 1
<max{||x1 —ull, m“f(u)—uﬂ}.

Thus {x,} is bounded, which leads to the boundedness of {f(x,)} and {T(#,)x,}. Using the assumption that
lim,,—, oo o, = 0, we get that

“xn+1 = T (tn)xn H =Qp || S en) = T (tn)xn || 4.2)

Since {T (¢)} is u.a.r. nonexpansive semigroup, then for z > 0,

lim [T (h) (T (t)xn) — T (t)xn | < lim sup| T ()(T (ta)x) — T (t,)x|| =0, (4.3)
n—0o0 n%ooxec

where C is any bounded subset of K containing {x,}.
Hence, for all 4 > 0,

“Xn+1 — T (h)xn+1 ” < ”xn-',-l = T(tn)xn ” + ”T(tn)xn - T(h)(T(tn)xn)“ + ”T(h)(T(tn)xn) — T (h)xn+1 “
L2||xnt1 = TW)xu | + | T @) xn — T (R)(T (1)x2) |-
Combining (4.2) and (4.3), we get that for all 4 > 0,

lim [ X1 = T ()xps1 || = 0. (4.4)
n—oo

From Theorem 3.2, there exists the unique solution p € F to the variational inequality (3.1). Since p = T (t) p, for all
t > 0, we have

%041 — Pl
= an(f ) = p. I Cngt — p)) + (1= )T (t)xn — p. J (Xng1 — P))
< an(f(p) = p.J g1 — P))+ o f () = £ (). T Gng1 — P)) + (1 — ) | T (t)xn — p|llxns1 — pll
Lan(f(p) = p. I Cng1 — P))+ | fn) = F(P) | Ixns1 — Il + (1 — @)X — pllllxass — pll
B21xn — plI2 + lxns1 — pl? X0 = pII* + lIXns1 — P12

<an(f(p) = p. J u1 — p)) + o 5 +1—a) 5
And thus,
Ixn41 = pI* < (1= an(1 = B%)) lxn — pI* + 2e(f (P) — p. T (st — P)).
that is
IXn1 =PI = (1 = y)llxa — PI* + Vuha. (4.5)

where y, = a, (1 — /32) and A, = 1—2/62 (f(p)—p, J(xpt1 — D))
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In order to prove that x, — p as n — 0o, we apply Lemma 4.1 to (4.5). Indeed, since by assumption Y oo | y, = 00,
we only need to show that limsup,,_, ., A, < 0 to conclude lim,, ||x, — p|| = 0. We claim that

limsup(f(p) — p, J (xn41 — p)) <O. (4.6)

n—oo

Let 2, = o [ (2m) + (1 — o) T () 21, Where t,,, and v, satisfies the condition of Theorem 3.2. Then it follows
from Theorem 3.2 that p = lim;;, 0 Zp-
Since

lzm = Xnt1 11> = (1 = am)(T ) zm — X1, I @m — Xns1)) + & f @m) — Xn1, T @ — Xng1))
= (1 — ) (T tm)zm — T ) Xns1, I @ — Xnt 1)) + (T E) Xng1 — X1, T @m — Xng1)))
+ am(fG@m) = 2m — (F(P) = P). I @m — Xng D))+ @ f(P) — P, T @m — Xns1))
+ mfzm = Xng1: I @m — Xnt1))
< Nxnst = 2l + | T @)xns1 = Xngt | M + am( £ (P) = P. T (2 — Xng1))
+M(| f@m) = LD + lzm — plI).

and hence

%041 — T (tm)Xnt1
) <

(f(p) = P, T (g1 — 2m) M+ 1+ BM|zm — pll, 4.7

U

where M is a constant such that M > ||x,4+1 — zn||. Therefore, taking upper limit as n — oo firstly, and then as
m — oo in (4.7), (using (4.4))

limsuplimsup(f(p) — p, J (cns1 — 2m)) < 0. (4.8)

m—0Q n—o0
On the other hand, since lim,,_, « 2, = p due to the fact the duality map J is single-valued and norm topology to
weak* topology uniformly continuous on bounded sets of E, we obtain lim,, oo (Xn4+1 — Zm) = Xn+1 — p, therefore
(f(p) = p. I (tng1 —zm)) = (f(P) — p. J (xng1 — p)) uniformly.

Thus given € > 0, there exists N > 1 such that if m > N, for all n we have

(f(p) = p. I Gng1 — P)) < (f(P) — P, I Gengt — 2m)) + €. (4.9)

Hence, by taking upper limit as n — oo firstly, and then as m — oo in two sides of (4.9),

limsup(f(p) — p, J (xpt1 — p)) < limsuplimsup(f (p) — p. J (Xnt1 — 2m)) + € < €.
o0

n—oo m—0o0 n—

Since ¢ is arbitrary, (4.6) is proved. Finally, we apply Lemma 4.1 to conclude that x, — p. O
Similar to the discussion of Theorem 3.3, the following result is clearly gained.

Corollary 4.3. (See [5, Theorem 3.2].) Let E be an uniformly convex Banach space with an uniformly Gdteaux
differentiable norm, and K, f, t,, a, be as Theorem 4.2. Assumed {T (t)} a nonexpansive semigroup from K into
itself such that F := Fix(F) =(),~o Fix(T (t)) # 9, and {x,} given by
Iy
1
S = f (5n) + (1= o) f T (s)x ds.
n
0

Then as n — oo, {x,} converges strongly to some common fixed point p of F such that p is the unique solution in F
to the co-variational inequality (3.1).
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Remark 4.4. (i) The conclusion of Theorem 4.2 still holds if E is an uniformly smooth Banach space and therefore,
when f(x) =u for all x € K, our result contains [3, Theorem 3.2] and [1, Theorem 20], and the control conditions
limy, s 00 a‘jﬁ =11in[3, Theorem 3.2] and Y o oty — dpt1| < 00, Y ooy [rn — Fat1] < 00 in [1, Theorem 20] can be
respectively removed.

(i) The method of proof in Theorem 4.2 carries over to a reflexive Banach space with a uniformly Gateaux
differentiable norm which has the fixed point property for nonexpansive self-mappings. Therefore, the condition
Z;io loy — ap41| < o0 in [3, Theorem 3.1] (f (x) = u) can be dropped.
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