期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:390
On stability of two degenerate reaction-diffusion systems
Article
Xu, Chuang1,2  Wei, Junjie1 
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Heilongjiang, Peoples R China
[2] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
关键词: Reaction-diffusion equation;    Lugiato-Lefever equation;    Asymptotic stability;    Exponential asymptotic stability;    Partially degeneracy;    Cross-diffusion effect;   
DOI  :  10.1016/j.jmaa.2012.01.032
来源: Elsevier
PDF
【 摘 要 】

In this paper, we construct a partially degenerate reaction-diffusion equation subject to the Neumann boundary condition and show that the zero solution is asymptotically stable but not exponentially asymptotically stable. In this way, we solve an open problem proposed by Casten and Holland (1977) [4] Moreover, we give the exponential asymptotic stability of the zero solution to a totally degenerate system with cross-diffusion effects, which cannot be determined by a simple spectral analysis based on the well developed semigroup theory. (C) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2012_01_032.pdf 177KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:1次