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In this paper, we construct a partially degenerate reaction–diffusion equation subject to the
Neumann boundary condition and show that the zero solution is asymptotically stable but
not exponentially asymptotically stable. In this way, we solve an open problem proposed
by Casten and Holland (1977) [4]. Moreover, we give the exponential asymptotic stability of
the zero solution to a totally degenerate system with cross-diffusion effects, which cannot
be determined by a simple spectral analysis based on the well developed semigroup theory.
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1. Introduction

In this paper, we consider two reaction systems having the following form

∂z

∂t
= D�z + f (z), (1.1)

in [0,∞) × Ω subject to the Neumann boundary data (∂z/∂ν)(t, x) = 0 for (t, x) ∈ [0,∞) × ∂Ω with initial data z(0, x) =
α(x), where z = (z1, z2, . . . , zk)

T ∈ R
k , Ω ⊂ R

q is some open bounded domain with smooth boundary, D – a square matrix,
ν – the outward unit normal vector on ∂Ω and f ∈ C3(Rk,Rk) with

f (z) = (
f1(z), f2(z), . . . , fk(z)

)T
.

Since the pioneering work by Turing [35], many mathematicians are devoted to studying the diffusion-driven instability
phenomenon, or in other words, the Turing bifurcation phenomenon [20,21,25,42]. And since Shigesada, Kawasaki and Ter-
amoto [30] introduced the cross diffusion in the dispersion terms in their study of spatial segregation of interacting species,
lots of mathematicians have flooded into the research on PDE models with cross-diffusion effects, such as cross-diffusion
induced instability and stability, existence of positive steady-state solutions, existence of global solutions, cross-diffusion
driven instability, existence of traveling wave solutions, Lyapunov stability of solutions, etc. (See [3,6,9,12,14,15,17,19,22,23,
26,27,29,31,33,34,39,40,43].)

In this paper, we call a system partially degenerate if the diffusion matrix has eigenvalues with both positive real parts
and zero real parts [11,12,37,41,45]. Moreover, we call a system totally degenerate if all the eigenvalues of the nonzero
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diffusion matrix have zero real parts, for instance, the diffusion matrix has a pair of purely imaginary eigenvalues [24].
We call a system degenerate if it is partially degenerate or totally degenerate. If a system is not degenerate, we call it
non-degenerate.

There are many papers addressing partially degenerate reaction–diffusion systems with one of the diffusion coefficients
being zero [10,11,28,41], and investigating the instability of the cross-diffusion systems with the diffusion matrix having
eigenvalues with zero real parts as well [24].

However, it seems that there is no enough theory to guarantee the correctness of work related to the stability analysis of
such degenerate systems, though there have been gigantic papers already [8,10,28,38,44]. Indeed, there has been inadequate
work on this topic, i.e., the related spectral stability criterion with respect to degenerate PDEs, since the classical work by
Casten and Holland [4], Smoller’s famous monograph [32] and the celebrated work on cross-diffusion equations by H. Amann
using semigroup theory [1,2].

In [4], Casten and Holland gave stability properties of reaction–diffusion systems with all the diffusion coefficients being
positive as well as reaction–diffusion systems with some of the diffusion coefficients being zero. Also they gave a generalized
version of Lyapunov function method in determining the asymptotic stability of a constant equilibrium solution. In [5], they
also addressed the instability of nonconstant equilibrium solutions.

In [36], Wang and Li gave some sufficient and necessary conditions (minors condition) for the stability and instability of
related matrices involved in reaction–diffusion systems, i.e., the diffusion matrix and the Jacobian of the reaction function.
They gave conditions on the maximum of the real parts of all the eigenvalues of matrices in order for the matrices being
stable. Also conditions were presented to make sure that all the eigenvalues of An have negative real parts with a uniform
negative upper bound (for the definition of An , we refer the readers to page 129 in the present paper). Their method is
based on compound matrix and Lozinskiĭ measure. However, they did not further investigate reaction system with cross-
diffusion effects, let alone the degenerate case.

In fact, local stability has various fundamental uses. For instance, detection of Hopf bifurcation phenomenon strongly
depends on it. Global stability is also based on local asymptotic stability. Hence it is of great significance to present some
general technique in establishing stability properties based on the spectrum for some degenerate PDEs which may have vast
scientific background [8,10,28,38,44].

By solving the following elliptic equation

D�z + f (z) = 0, (1.2)

we can obtain the steady states of system (1.1). According to [4], we usually call the solutions of system (1.2) equilibrium
solutions of system (1.1); in particular, we call such solution a constant equilibrium solution to system (1.1) if the equilibrium
solution is a constant. Throughout this paper, we assume f (0) = 0 without loss of generality so that the zero solution z ≡ 0
is an equilibrium solution. Let f (z) = Az + g(z) with g(0) = 0, ∇g(0) = 0, and define the linearized system of (1.1) as
follows

∂z

∂t
= D�z + Az. (1.3)

This paper is motivated by an open problem (see Section 3) proposed in [4]. We mainly focus on two reaction systems.
By studying a partially degenerate reaction system, we give a negative answer to the open problem and show the non-
equivalence of asymptotic stability and exponential asymptotic stability. Also we give the exponential asymptotic stability of
the zero solution to a totally degenerate reaction system with cross-diffusion effects.

This paper is organized as follows. In Section 2, we first give the definitions of stability of an equilibrium solution,
show that stability properties are preserved under nonsingular linear transformation and give the relationship between
system (1.1) and its linearized system (1.3) with respect to exponential asymptotic stability. Then, we solve an open problem
proposed in [4] by giving a linear reaction–diffusion system and show that the system is globally asymptotically stable but
not exponentially stable in Section 3. In Section 4, we give exponential asymptotic stability of the zero solution to a totally
degenerate reaction system with cross-diffusion effects, Lugiato–Lefever equation [24], arising from the complex dynamical
systems. Finally, a brief conclusion is presented in Section 5.

2. Definitions of stability and basic properties of stability with respect to systems (1.1) and (1.3)

In this section, we give the definitions of stability and some basic properties of stability.
Throughout this paper, we use l1 vector norm for z = (z1, z2, . . . , zk) ∈ C

k , i.e., ‖z‖1 = |z1| + |z2| + · · · + |zk|. And we
use the maximum column sum matrix norm for P = (pij)m×n ∈ Mm,n(C), i.e., ‖P‖1 = max1� j�n

∑m
i=1 |pij |. Here Mm,n(C) is

the set of m × n matrices defined over C and Mk,k(C) is abbreviated to Mk(C) in the following. For simplicity, we use | · |
instead of ‖ · ‖1 for vectors in C

k and ‖ · ‖ instead of ‖ · ‖1 for matrices in Mm,n(C) (note that | · | is also used to represent
the norm for complex numbers and ‖ · ‖ for a function norm later in this paper). Then we know that such matrix norm ‖ · ‖
is induced by the vector norm | · | (see [13]). Hence we have the following lemma according to [13].

Lemma 2.1. |P z| � ‖P‖ · |z|, for all P ∈ Mk(C) and z ∈C
k.
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Similarly, we further give the following inequalities without proofs.

Lemma 2.2. |P z| � ‖P‖ · |z|, for all P ∈ Mm,n(C) and z ∈C
n.

Lemma 2.3. ‖P Q ‖ � ‖P‖ · ‖Q ‖, for all P ∈ Mm,n(C) and Q ∈ Mn,p(C).

These lemmas can be viewed as a basis for the inequalities appearing in the proofs of the main results, e.g., Theorem 2.6.
We use the supreme norm for a continuous vector-valued function, i.e., for a continuous vector-valued function g defined

on Ω̄ , ‖g‖ = supx∈Ω̄ |g(x)|. Now we are ready to give the definitions of stability. An equilibrium solution β(x) is said to be
stable if for any ε > 0, there exists δ > 0 such that if ‖z(0, ·)−β‖ < δ, then ‖z(t, ·)−β‖ < ε for all t � 0. The solution is said
to be asymptotically stable if it is stable and there exists δ > 0 such that ‖z(t, ·) − β‖ → 0 as t → ∞ for ‖z(0, ·) − β‖ < δ.
Further more, the solution is said to be exponentially asymptotically stable if there exist three positive constants δ, K and
ω such that if ‖z(0, ·) − β‖ < δ, then∥∥z(t, ·) − β

∥∥ � K e−ωt
∥∥z(0, ·) − β

∥∥ (2.1)

for all t � 0. If δ can be chosen arbitrarily large, then the solution is said to be globally (exponentially) asymptotically stable.
The solution is unstable if it is not stable.

It is easy to see that if a solution is (globally) exponentially asymptotically stable, then the solution is (globally) asymp-
totically stable.

Remark 2.4. The definitions with respect to stability of a constant equilibrium solution are equivalent to those defined in [4].

Remark 2.5. By definition, if a solution to a system is (globally) (exponentially) asymptotically stable (unstable) with respect
to l1 vector norm, then it is (globally) (exponentially) asymptotically stable (unstable) with respect to any other vector
norm, e.g., the Euclidean norm (l2 vector norm) due to the norm-equivalence for finite-dimensional linear vector spaces.
This implies that in fact if we choose other vector norm, the conclusions in this paper still hold.

Now we give a fundamental theorem that will be used extensively in the sequel.

Theorem 2.6. Nonsingular linear transformation preserves the stability property.

Proof. Suppose that the equilibrium solution β(x) of system (1.1) is stable. According to the definition of stability, we
know for any ε > 0, there exists δ > 0 such that if ‖z(0, ·) − β‖ < δ, then ‖z(t, ·) − β‖ < ε for all t � 0. Let P ∈ Mk(C) be
nonsingular and make the transformation w = P−1z. Consider the equilibrium solution P−1β(x) of the transformed system

∂ w

∂t
= P−1 D�P w + P−1 f (P w). (2.2)

For any ε1 > 0, we take ε = ‖P−1‖−1ε1/2 and δ1 = ‖P‖−1δ/2 > 0. For ‖w(0, ·) − P−1β‖ < δ1, we have |z(0, x) − β(x)| =
|P (w(0, x) − P−1β(x))| � ‖P‖ · |w(0, x) − P−1β(x)| < ‖P‖δ1 = δ/2, for any x ∈ Ω̄ , which implies ‖z(0, ·) − β‖ � δ/2 < δ.
Hence we have ‖z(t, ·) − β‖ < ε, for all t � 0. And therefore for any x ∈ Ω̄ , we have |z(t, x) − β(x)| < ε, for all t � 0. So for
any x ∈ Ω̄ , |w(t, x)− P−1β(x)| = |P−1 P (w(t, x)− P−1β(x))| = |P−1(z(t, x)−β(x))| � ‖P−1‖|z(t, x)−β(x)| < ‖P−1‖ε = ε1/2,
for all t � 0, from which follows ‖w(t, ·) − P−1β‖ � ε1/2 < ε1, for all t � 0.

By following a similar argument, (global) (exponential) asymptotic stability as well as instability can also be proved to
be preserved under nonsingular linear transformation. �
Remark 2.7. Note that for any square matrix P = (pij)k×k , �P = P�, where

� = diag

{ q∑
i=1

∂2

∂x2
i

, . . . ,

q∑
i=1

∂2

∂x2
i

}
.

In fact,

�P z =
( q∑

i=1

∂2

∂x2
i

k∑
j=1

p1 j z j, . . . ,

q∑
i=1

∂2

∂x2
i

k∑
j=1

pkj z j

)T

=
(

k∑
j=1

p1 j

q∑
i=1

∂2

∂x2
i

z j, . . . ,

k∑
j=1

pkj

q∑
i=1

∂2

∂x2
i

z j

)T

= P�z.



C. Xu, J. Wei / J. Math. Anal. Appl. 390 (2012) 126–135 129
This means that if the diffusion matrix is D for some reaction system cross-diffusion effects, then we can study an equivalent
system with the diffusion matrix P−1 D P , where P is a suitable nonsingular matrix (in order for P−1 D P being the Jordan
canonical form of D). Here the ‘equivalent’ means that the corresponding equilibrium solutions of the two systems share
the same stability properties by Theorem 2.6.

We use the technique of eigenfunction expansions throughout this paper. The justification of this approach for sys-
tem (1.3) follows from [18]. Let 0 = λ0 � λ1 � λ2 � · · · � λn � · · · denote the eigenvalues and φ0, φ1, . . . , φn, . . . , the
corresponding normalized eigenfunctions of Laplace’s equation in Ω with the Neumann boundary condition; that is λn ,
φn satisfy −�φn = λnφn in Ω , with ∂φn/∂ν = 0 on ∂Ω , and

∫
Ω

φ2
n (x)dx = 1. For each nonnegative integer n, let z0n be the

k-vector

z0n =
∫
Ω

α(x)φn(x)dx (2.3)

and let the k × k matrix exponential e Ant be the matrix solution to the differential equation

dz

dt
= Anz, (2.4)

where An = A − λn D , and the initial condition is e An0 = I . Then the solution to the linearized system (1.3) can be written
in the following form

z(t, x) =
∞∑

n=0

φn(x)e Ant z0n. (2.5)

Note that (2.5) defines a semigroup Tt through the definition

z(t, x) = (Ttα)(x). (2.6)

Next we will use the representation (2.6) to establish a relationship between system (1.1) and system (1.3) with respect to
exponential asymptotic stability.

Beforehand we give the following preliminary inequalities according to [4]:

|z0n| =
∣∣∣∣
∫
Ω

φn(x)α(x)dx

∣∣∣∣ �
√|Ω|‖α‖ (2.7)

and

‖φn‖ � Cλn, (2.8)

where |Ω| = ∫
Ω

1 dx and C is a positive constant possibly depending on Ω . For more results on eigenvalues and eigenfunc-
tions, we refer the readers to [7].

Theorem 2.8. The zero solution to (1.1) is exponentially asymptotically stable if the zero solution to (1.3) is exponentially asymptotically
stable.

Proof. Actually the proof is the same as in [4] but a small typo. For the readers’ convenience, we copy it as follows. We
write the solution in the form

z(t, x) = (Ttα)(x) +
t∫

0

(Tt−s g)
(
z(s, x)

)
ds, (2.9)

where Tt was defined in (2.6). Let δ, K and ω be as in (2.1). Then we have ‖Ttα‖ � K e−ωt‖α‖. By g(0) = 0, ∇g(0) = 0 and
g ∈ C2(Rk,Rk), we know that there exists γ > 0 such that |g(z)| � (ω/(2K ))|z| if |z| � 2γ . Let ‖α‖ < min{2γ /K , δ}. Then
there is a time 0 < T � ∞ (possibly depending on α) such that ‖z(t, ·)‖ < 2γ for 0 � t < T . Then on [0, T ), we have

∥∥z(t, ·)∥∥ � K e−ωt‖α‖ +
t∫

0

ω

2
e−ω(t−s)

∥∥z(s, ·)∥∥ds. (2.10)

Define R(t) = ‖z(t, x)‖eωt . Then Gronwall’s inequality yields

R(t) � R(0)K e
ω
2 t .
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Substituting we obtain that∥∥z(t, ·)∥∥ � K e− ω
2 t‖α‖ < 2γ e− ω

2 t . (2.11)

Since the right-hand side is less than 2γ for all t � 0, we have T = ∞ and therefore (2.11) is valid for all t � 0. The desired
conclusion follows from the estimate (2.11). �
Remark 2.9. We would like to mention that a careful examination of the proofs of all the main results obtained in the
previous subsections shows that when system (1.1) is subject to the zero Dirichlet boundary conditions, i.e.,

z(t, x) = 0, (t, x) ∈ [0,∞) × ∂Ω, (2.12)

all the conclusions obtained in the previous subsections still hold.

3. A response to an open problem

In this section, we consider a partially degenerate reaction–diffusion system as a response to Remark 10 in [4]. For the
readers’ convenience, we copy the remark as follows.

Remark 10. The estimate (12) is a sufficient condition for asymptotic stability. It is not clear whether it is a necessary
condition. Without the assumption on C , it is possible that the real parts of the eigenvalues of An may not be bounded
below zero even though they are negative.

The estimate (12) here mentioned in this remark is the exponential estimate, i.e., there exist positive constants ω and K
such that for all t � 0,

‖Ttα‖ � K e−ωt‖α‖; (3.1)

where

D =
(

D̃ 0
0 0

)
(3.2)

and

A =
(

Ã B1
B2 C

)
, (3.3)

with D̃ a diagonal matrix with positive entries and An = A − λn D .
There are partially degenerate cases where the assumption made in Theorem 4 in [4] is satisfied, for instance [16,45].

Thus the asymptotic stability for these cases can be treated according to [4]. However, now we are ready to give one
case where the assumption fails. In the following, we concentrate on system (1.3) subject to the Neumann boundary data
with

D =
(

d 0
0 0

)
and A =

( −3 1
−1 0

)
,

where d > 0. For further convenience, we rewrite the system as follows(
∂z1
∂t
∂z2
∂t

)
=

(
d 0
0 0

)⎛
⎝ ∂2z1

∂x2

∂2z2
∂x2

⎞
⎠ +

( −3 1
−1 0

)(
z1
z2

)
. (3.4)

In fact, this is the case where the assumption in Theorem 4 in [4] fails, because in this case, the real parts of the
eigenvalues of An are not bounded below and away from zero though they are negative. More accurately, there is a sequence
of eigenvalues approaching to −∞ and the other approaching to 0 from the left on the real axis. Now we will show that
the open problem whether exponential asymptotic stability is equivalent to asymptotic stability proposed in [4] by giving a
negative answer through this example.

Theorem 3.1. The zero solution to system (3.4) is not exponentially asymptotically stable.

Proof. First, according to (2.5), the solution to (3.4) can be represented as follows:

z(t, x) =
∞∑

φn(x)e Ant z0n,
n=0
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where An = A − λn D = ( −3−dλn 1
−1 0

)
, λn , φn , α and z0n were defined in Section 2. Let μ1,n < μ2,n be the two real eigenvalues

of An . Simple calculations lead to μ1,nμ2,n = 1, μ2,n < 0, limn→∞ μ1,n = −∞ and limn→∞ μ2,n = 0. More precisely,

lim
n→∞μ1,n/(−dλn) = 1 and lim

n→∞μ2,n(−dλn) = 1. (3.5)

Let Pn = ( 1 1
−1/μ1,n −1/μ2,n

)
. Then P−1

n An Pn = (μ1,n 0
0 μ2,n

)
. Hence we have

e Ant =
⎛
⎝ μ2,neμ2,nt−μ1,neμ1,nt

μ2,n−μ1,n

μ1,nμ2,n(eμ2,nt−eμ1,nt
)

μ2,n−μ1,n

eμ1,nt−eμ2,nt

μ2,n−μ1,n

μ2,neμ1,nt−μ1,neμ2,nt

μ2,n−μ1,n

⎞
⎠ . (3.6)

Thus

φn(x)e Ant z0n = φn(x)

⎛
⎝ μ2,neμ2,nt−μ1,neμ1,nt

μ2,n−μ1,n
z(1)

0n + eμ2,nt−eμ1,nt

μ2,n−μ1,n
z(2)

0n

eμ1,nt−eμ2,nt

μ2,n−μ1,n
z(1)

0n + μ2,neμ1,nt−μ1,neμ2,nt

μ2,n−μ1,n
z(2)

0n

⎞
⎠ .

Note here we use μ1,nμ2,n = 1. Hence for any ε > 0, there exists N ∈ N
+ such that ε/2 + μ2,n > 0, for any n � N . Choose

α(x) = (0, φN (x))T .

∥∥z(t, ·)∥∥ = ∥∥φN(·)e AN t z0N
∥∥ � μ2,neμ1,nt − μ1,neμ2,nt

μ2,n − μ1,n
� eμ2,nt,

which indicates∥∥z(t, ·)eεt
∥∥ > eεt/2 → ∞

as t → ∞. Notice that according to (2.8), ‖α‖ � CλN , which shows that the zero solution to (3.4) is not exponentially
asymptotically stable. �

In the following, we will show that the zero solution to (3.4) is globally asymptotically stable with the spatial domain
Ω = (0,π), under some circumstance.

Theorem 3.2. If the initial function satisfies

(H)

π∫
0

α(x) cos nx dx ∼ O
(
1/n2) as n → ∞,

then the zero solution to (3.4) is globally asymptotically stable.

Proof. We divide the proof into two steps. In the first step, we will show that the global asymptotic profile of the solution
to (1.1) with initial data α. In the second step, we show the stability of the zero solution.

Step 1. Note that the eigenvalues and the corresponding normalized eigenfunctions of −�φn = λnφn in (0,π) with the

Neumann boundary conditions are n2 and
√

2
π cosnx, respectively, for n ∈ N. According to (3.5), we know

lim
n→∞μ1,n/

(−dn2) = 1 and lim
n→∞μ2,n

(−dn2) = 1. (3.7)

Furthermore, μ1,n ∼O(n2) and μ2,n ∼O(1/n2) as n → ∞. According to (3.6), we have

∥∥e Ant
∥∥ ∼ O

(
e−t/(dn2)

)
.

Thus there exist constants N ∈ N
+ and C > 0, such that∣∣∣∣∣

∞∑
n=N+1

φn(x)e Ant z0n

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
n=N+1

√
2

π
cosnxe Ant z0n

∣∣∣∣∣ � C
∞∑

n=N+1

1/n2e−t/(dn2). (3.8)

Before proceeding the remainders of Step 1, we give the following lemma, which is useful for the forthcoming estimates.
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Lemma 3.3. h(x) = x1/4 − ex < 0 for x > 0.

Proof. Note h′(x) = 1
4 x−3/4 − ex . Hence there is an x0 > 0 such that h′(x) > 0 when x ∈ (0, x0) while h′(x) < 0 when x ∈

(x0,∞). Moreover, h′(x0) = 0. This is easily seen because h′(x) is strictly decreasing in x for x ∈ (0,∞). This means that
h(x0) = maxx∈(0,∞) h(x). Moreover, notice that x−3/4

0 /4 = ex0 , hence we have h(x0) = x1/4
0 − x−3/4

0 /4 = x−3/4
0 (x0 −1/4). Hence

it suffices to show that x0 < 1/4. In fact, h′(1/4) = 1/
√

2 − e1/4 < 0, which indicates x0 < 1/4 by the monotonicity of
h′(x). �

By this lemma, we see that

∞∑
n=N+1

1/n2e−t/(dn2) � d1/4t−1/4
∞∑

n=N+1

1/n3/2. (3.9)

Also, there exists K > 0 and ω > 0 such that∣∣∣∣∣
N∑

n=0

φn(x)e Ant z0n

∣∣∣∣∣ � K e−ωt‖α‖. (3.10)

Then it follows from inequalities (3.8)–(3.10) that limt→∞ |z(t, x)| = 0, i.e.,

lim
t→∞ z(t, x) = 0. (3.11)

Step 2. First note that according to [4], for any fixed T > 0, there exists a positive constant K1 such that

sup
0�t�T

∥∥z(t, ·)∥∥ � K1‖α‖. (3.12)

From (3.11) in Step 1, we know that for any ε > 0, there exists T > 0 such that ‖z(t, ·)‖ < ε when t > T , for ‖α‖ < 1
and then choose δ > 0 such that 0 < δ < min{1, ε/K1}. Hence by (3.12), for ‖α‖ < δ, we have ‖z(t, ·)‖ � K1‖α‖ < K1δ <

K1 × ε/K1 = ε , for t ∈ [0, T ]. This implies the stability of the zero solution, and therefore the global asymptotic stability
follows from (3.11). �

From Theorem 3.1 and Remark 3.5, we can see that in this example, such asymptotic stability is not the exponential
asymptotic stability as we often encounter. And by Theorems 2.8, 3.1 and 3.2, we still do not know whether the zero
solution to a system with (3.4) as its linearized system is asymptotically stable or not. This is quite different from ODE
systems and contrary to what we have taken for granted for years [8,10,28,36,38,44].

Now we give a specific condition when the assumption (H) is satisfied.

Corollary 3.4. If the derivative of the initial function α is of bounded variation, then the solution to system (1.1) satisfies
limt→∞ z(t, x) = 0.

Proof. We only need to verify that the hypothesis (H) holds. In fact,

∣∣∣∣∣
π∫

0

α(x) cos nx dx

∣∣∣∣∣ =
∣∣∣∣∣−1

n

π∫
0

α′(x) sin nx dx

∣∣∣∣∣ =
∣∣∣∣∣−1/n2

π∫
0

cosnx dα′(x)

∣∣∣∣∣ � 1/n2 Vα′(0,π), (3.13)

which implies that the hypothesis (H) holds, where Vα′(0,π) is the total variation of α′ on [0,π ]. �
Remark 3.5. If we are concerned with sufficient smooth solutions (for instance, classical solutions), then we can restrict the
initial functions in the space {u ∈ C2(0,π) ∩ C1[0,π ]: u′(0) = u′(π) = 0}, then by Corollary 3.4, we know that the zero to
system (3.4) is globally asymptotically stable.

In practice, we are prone to have faith in that the assumption (H) always holds for initial functions we are concerned
with or interested in. Moreover, for arbitrary bounded spatial domain Ω , we guess that the conclusions of Theorem 3.2 still
hold.
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4. A totally degenerate reaction system with cross diffusion effect

In this section, we consider a totally degenerate reaction system with cross-diffusion effects. There is one example
arising from the complex dynamical systems, e.g., Lugiato–Lefever equation with the diffusion matrix having a pair of purely
imaginary eigenvalues, which implies that the equation is totally degenerate.

Lugiato–Lefever equation is as follows [24]:(
∂u1
∂t

∂u2
∂t

)
=

(
0 −b2

b2 0

)⎛
⎝ ∂2u1

∂x2

∂2u2
∂x2

⎞
⎠ +

(
−u1 + (θ − c)u2 − c(2u1u2 + u2(u2

1 + u2
2))

(3c − θ)u1 − u2 + c(3u2
1 + 2u2

2 + u1(u2
1 + u2

2))

)
, (4.1)

where c > 0, b2 �= 0 and θ ∈ R. In [24], the spatial domain is (−1/2,1/2) and periodic boundary conditions are imposed. For
simplicity, we only consider system (4.1) subject to the Dirichlet boundary condition when the spatial domain is (0,π). In
fact, if Neumann boundary condition is taken into consideration, similar results will be obtained by substituting assumption
(H ′) by (H).

Theorem 4.1. If

(P ) 3c � θ or c � θ

and the initial function α satisfies

(
H ′) π∫

0

α(x) sin nx dx ∼ O
(
1/n2) as n → ∞,

then the zero solution to system (4.1) is exponentially asymptotically stable.

Proof. We only need to show that the linearized system of (4.1) is exponentially asymptotically stable. The proof in the
following is similar to that of Theorem 3.1 in Section 3 in this paper. Note that

D =
(

0 −b2

b2 0

)

and

A =
( −1 θ − c

3c − θ −1

)
.

Straightforward calculations lead to that both of the eigenvalues of An are −1 ± ibn , where i is the imaginary unit and
bn =

√
b4λ2

n + 2cb2λn + (3c − θ)(c − θ) > 0, for all n ∈N
+ . It is easy to see that limn→∞ bn

b2λn+θ−c
= 1. Moreover,

z(t, x) =
∞∑

n=0

φn(x)e Ant z0n,

where φn(x) = sin nx and

e Ant =
⎛
⎝ e(−1+ibn)t+e(−1−ibn)t

2
(b2λn+θ−c)(e(−1+ibn)t−e(−1−ibn)t )

2ibn

bn(e(−1+ibn)t+e(−1−ibn)t )

−2i(b2λn−θ+c)
e(−1+ibn)t+e(−1−ibn)t

2

⎞
⎠ . (4.2)

It follows that there exists N0 ∈N such that ‖e Ant‖ � 2e−t for all t � 0, n � N0 (in fact, we only need bn
b2λn+θ−c

∈ [1/
√

2,
√

2]
for n � N0). There exist constants N � N0, C > 0 and C ′ > 0, such that∣∣∣∣∣

∞∑
n=N+1

φn(x)e Ant z0n

∣∣∣∣∣ � Ce−t
∞∑

n=N+1

1/n2 (4.3)

and ∣∣∣∣∣
N∑

n=0

φn(x)e Ant z0n

∣∣∣∣∣ � C ′e−t . (4.4)

So far we have obtained the asymptotic profile, i.e., estimate (2.1) holds with ω = 1, β = 0 and z(0, ·) = α.
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The rest of the proof of the local stability can be derived by the same argument as that in Step 2 in the proof of
Theorem 3.1. �

From this example, we can see that even all the eigenvalues of the linear system have negative real parts uniformly
bounded above by a negative constant, we still have to impose some other assumption (like (H ′) in this model) in order
to obtain the exponential asymptotic stability. In fact system (4.1) is no longer a parabolic system, it is easy to see that
system (4.1) can be written as a nonlinear Schrödinger system, to which the analytic semigroup theories cannot be applied
directly, however C0 semigroup theories can be still applied to. According to the abstract linear or nonlinear exponential
stability based on C0 semigroup theories, the linear exponential stability of zero cannot be derived directly from the spectral
stability of zero solutions. Some additional assumptions (like some stronger spectral estimates) are needed to guarantee the
linear exponential stability, which may explain why some additional assumptions on initial values are required to get the
linear exponential stability by further verifying the related spectral assumptions. Conditions in order for a negative common
uniform upper bound can be found in [36] when D is a diagonal matrix. In practice, we believe in the fact that, the method
and technique used in [36] can be used to deal with the case when cross-diffusion effects are considered, i.e., when D is
not a diagonal matrix. If such conditions are derived, it is easy for one to judge whether solutions to some specific system
is stable or not by applying the method in the proof of Theorem 4.1.

5. Conclusion

In this paper, we first define stability, (global) (exponential) asymptotic stability and instability of an equilibrium solution.
Then we demonstrate that nonsingular linear transformation preserves the stability properties. Also we prove that the
exponential asymptotic stability of the zero solution to a system can be induced by that of the zero solution to its linearized
system.

Then we give a negative answer to an open problem proposed by Casten and Holland [4] by proving the zero solution to
a partially degenerate reaction diffusion system is asymptotically stable but not exponentially asymptotically stable, which
indicates the non-equivalence of asymptotic stability and exponential asymptotic stability.

Finally, we give exponential asymptotic stability of the zero solution to a totally degenerate system with cross diffusion
effects.
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