期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:384
On singular integral operators with semi-almost periodic coefficients on variable Lebesgue spaces
Article
Karlovich, Alexei Yu1  Spitkovsky, Ilya M.2 
[1] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Matemat, P-2829516 Quinta Da Torre, Caparica, Portugal
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
关键词: Almost-periodic function;    Semi-almost periodic function;    Slowly oscillating function;    Variable Lebesgue space;    Singular integral operator;    Fredholmness;    Invertibility;   
DOI  :  10.1016/j.jmaa.2011.06.066
来源: Elsevier
PDF
【 摘 要 】

Let a be a semi-almost periodic matrix function with the almost periodic representatives a(l) and a(r) at infinity and +infinity, respectively. Suppose p : R -> (1, infinity) is a slowly oscillating exponent such that the Cauchy singular integral operator S is bounded on the variable Lebesgue space L-p(.)(R). We prove that if the operator aP + Q with P = (I + S)/2 and Q = (I - S)/2 is Fredholm on the variable Lebesgue space L-N(p(.))(R), then the operators a(l)P + Q and a(r)P + Q are invertible on standard Lebesgue spaces L-N(ql)(R) and L-N(qr)(R) with some exponents q(l) and q(r) lying in the segments between the lower and the upper limits of p at -infinity and +infinity, respectively. (C) 2011 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2011_06_066.pdf 274KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次