
J. Math. Anal. Appl. 384 (2011) 706–725
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and
Applications

www.elsevier.com/locate/jmaa

On singular integral operators with semi-almost periodic coefficients on
variable Lebesgue spaces

Alexei Yu. Karlovich a,∗, Ilya M. Spitkovsky b

a Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
b Department of Mathematics, College of William & Mary, Williamsburg, VA 23187-8795, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 April 2011
Available online 29 June 2011
Submitted by J.A. Ball

Keywords:
Almost-periodic function
Semi-almost periodic function
Slowly oscillating function
Variable Lebesgue space
Singular integral operator
Fredholmness
Invertibility

Let a be a semi-almost periodic matrix function with the almost periodic representatives
al and ar at −∞ and +∞, respectively. Suppose p : R → (1,∞) is a slowly oscillating
exponent such that the Cauchy singular integral operator S is bounded on the variable
Lebesgue space Lp(·)(R). We prove that if the operator aP + Q with P = (I + S)/2 and
Q = (I − S)/2 is Fredholm on the variable Lebesgue space Lp(·)

N (R), then the operators
al P + Q and ar P + Q are invertible on standard Lebesgue spaces Lql

N (R) and Lqr
N (R) with

some exponents ql and qr lying in the segments between the lower and the upper limits
of p at −∞ and +∞, respectively.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Given a Banach space X , we denote by XN the Banach space of all columns of height N with components in X ; the
norm in XN is defined by

∥∥(x1, . . . , xN )T
∥∥

XN
=

(
N∑

α=1

‖xα‖2
X

)1/2

.

Given a subalgebra B of L∞(R), we denote by BN×N the algebra of all N × N matrices with entries in B; we equip B N×N

with the norm

‖a‖B N×N = ∥∥(aαβ)N
α,β=1

∥∥
B N×N

=
(

N∑
α,β=1

‖aαβ‖2
B

)1/2

.

Let B(X) denote the Banach algebra of all bounded linear operators on X and let K(X) denote the ideal of all compact
operators on X . As usual, A∗ denotes the adjoint operator of A ∈ B(X). An operator A ∈ B(X) is said to be Fredholm on X
if its image Im A is closed in X and

dim Ker A < ∞, dim(X/Im A) < ∞.
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We denote by C(R) the set of all complex-valued continuous functions c on R which have finite limits c(−∞) and
c(+∞) at −∞ and +∞. Let C(Ṙ) be the set of all functions c ∈ C(R) such that c(−∞) = c(+∞). An almost-periodic
polynomial is a function of the form

a(x) =
m∑

j=1

a je
iλ j x (x ∈ R) with a j ∈ C, λ j ∈ R.

The set of all almost-periodic polynomials will be denoted by AP0. The algebra AP of the continuous almost-periodic func-
tions is defined as the closure of AP0 in L∞(R); its closure with respect to a stronger Wiener norm ‖a‖W := ∑ |a j | is the
algebra APW . Note that APW is dense in AP. Finally, the algebra SAP of the semi-almost-periodic functions is the smallest
closed subalgebra of L∞(R) containing C(R) ∪ AP. The algebra SAP was introduced by Sarason [37], who also showed that
every a ∈ SAPN×N can be written in the form

a = (1 − u)al + uar + a0,

where u ∈ C(R) is any fixed function such that 0 � u � 1, u(−∞) = 0, u(+∞) = 1, al and ar belong to APN×N , and a0 is in
[C0]N×N , the set of all continuous matrix functions vanishing at −∞ and +∞. Moreover, al and ar are uniquely determined
by a and the maps a �→ al and a �→ ar are C∗-algebra homomorphisms of SAPN×N onto APN×N . The matrix functions al and
ar are referred to as the almost-periodic representatives of a at −∞ and +∞, respectively (for N = 1, see [6, Theorem 1.21];
for N > 1, the proof is the same).

For a continuous function f : R → C and J ⊂ R, let

osc( f , J ) := sup
t,τ∈ J

∣∣ f (t) − f (τ )
∣∣.

Following [31], we denote by SO the class of slowly oscillating functions given by

SO :=
{

f ∈ C(R): lim
x→+∞ osc

(
f , [−2x,−x] ∪ [x,2x]) = 0

}
∩ L∞(R).

Clearly, SO is a unital C∗-subalgebra of L∞(R) that contains C(Ṙ).
Let p : R → [1,∞] be a measurable a.e. finite function. By L p(·)(R) we denote the set of all complex-valued functions f

on R such that

I p(·)( f /λ) :=
∫
R

∣∣ f (x)/λ
∣∣p(x)

dx < ∞

for some λ > 0. This set becomes a Banach space when equipped with the norm

‖ f ‖p(·) := inf
{
λ > 0: I p(·)( f /λ) � 1

}
.

It is easy to see that if p is constant, then L p(·)(R) is nothing but the standard Lebesgue space L p(R). The space L p(·)(R) is
referred to as a variable Lebesgue space. We will always suppose that

1 < p− := ess inf
x∈R

p(x), ess sup
x∈R

p(x) =: p+ < ∞. (1.1)

Under these conditions, the space L p(·)(R) is separable and reflexive, its dual space is isomorphic to the space L p′(·)(R),
where

1/p(x) + 1/p′(x) = 1 (x ∈ R)

(see, e.g., [24]).
The Cauchy singular integral operator S is defined for f ∈ L1

loc(R) by

(S f )(x) := 1

π i

∫
R

f (τ )

τ − x
dτ (x ∈ R),

where the integral is understood in the principal value sense. Assume that S generates a bounded operator on L p(·)(R) and
put

P := (I + S)/2, Q := (I − S)/2.

The operators S , P , and Q are defined on L p(·)
N (R) elementwise. If a ∈ L∞

N×N(R), then the operator aI of multiplication by

a is bounded on L p(·)
N (R). We will say that the operator aP + Q with a ∈ L∞

N×N (R) is a singular integral operator with the
coefficient a.
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A Fredholm criterion for Banach algebras of singular integral operators with piecewise continuous coefficients on variable
Lebesgue spaces L p(·)(Γ, w) over Carleson Jordan curves with weights having finite sets of singularities were obtained in
[17–19] (see also the references therein). The approach of these works is based on further developments of the methods of
the monograph [4] based on localization techniques, Wiener–Hopf factorization and heavy use of results and methods from
the theory of submultiplicative functions. An alternative approach to Fredholm theory of singular integral operators with
piecewise continuous and slowly oscillating coefficients is based on the method of limit operators and Mellin pseudodiffer-
ential operators techniques (we refer to [32], [4, Section 10.6], [5] in the case of standard Lebesgue spaces and to [34,35] in
the case of weighted variable Lebesgue spaces). The second approach allows one to treat the case of composed curves, but
still not arbitrary composed Carleson curves.

Notice that in all mentioned works coefficients are piecewise continuous or slowly oscillating; and the variable exponent
p is continuous and has a finite limit at infinity in the case of unbounded curves. The aim of the present paper is to
make the first step beyond these hypotheses: we are going to study singular integral operators aP + Q with a ∈ SAPN×N on
variable exponent spaces with the exponent p which may not have a limit at infinity.

Let E denote the class of exponents p : R → [1,∞] satisfying (1.1), continuous on R, and such that the Cauchy singular
integral operator is bounded on L p(·)(R). First, we observe that this class contains interesting exponents.

Lemma 1.1. There exists an exponent p ∈ E such that p ∈ SO \ C(Ṙ).

Lerner [27] constructed an example of a variable exponent pL /∈ C(Ṙ) such that the Hardy–Littlewood maximal operator
M is bounded on L pL(·)(R). It is known that the boundedness of the Hardy–Littlewood maximal operator implies the bound-
edness of the Cauchy singular integral operator [10,11,20]. Thus pL ∈ E . It turns out that pL ∈ SO, which gives the proof of
Lemma 1.1. All details of the proof of Lemma 1.1 are contained in Section 2.

Our main result is the following.

Theorem 1.2 (Main result). Let a ∈ SAPN×N and p ∈ E ∩ SO. If the operator aP + Q is Fredholm on the variable Lebesgue space

L p(·)
N (R), then

(a) there is an exponent qr lying in the segment[
lim inf
x→+∞ p(x), lim sup

x→+∞
p(x)

]
such that ar P + Q is invertible on the standard Lebesgue space Lqr

N (R);
(b) there is an exponent ql lying in the segment[

lim inf
x→−∞ p(x), lim sup

x→−∞
p(x)

]
such that al P + Q is invertible on the standard Lebesgue space Lql

N (R).

For standard Lebesgue spaces this result boils down to the statement that Fredholmness of aP + Q with a ∈ SAPN×N on
L p

N(R) implies the invertibility of ar P + Q , al P + Q on the same space L p
N (R), and in this form was established in [21] (see

also its proof in [6, Chap. 18]).
Note also that if b ∈ APWN×N , then the operator bP + Q is invertible on all standard Lebesgue spaces L p

N (R), 1 < p < ∞,
as soon as it is invertible on at least one of them (see [6, Section 18.1]). It is not known at the moment whether this
property persists for all b ∈ APN×N . In particular, we do not know whether in the setting of Theorem 1.2 the operators
al P + Q and ar P + Q are invertible on Lql (R) and Lqr (R) for all ql and qr in the segments between the lower and the upper
limits of p at −∞ and +∞, respectively.

The proofs in [6,21] are based on the method of limit operators. The outline of this method is as follows. Let h ∈ R and
Vh be the translation operator given by

(Vh f )(x) := f (x − h) (x ∈ R).

It is well known that this operator is an isometry on every standard Lebesgue space. Moreover, it commutes with the Cauchy
singular integral operator S . The method of limit operators consists in the study of the strong limits of V−hk AVhk as k → ∞
for a given operator A and a given sequence {hk}∞k=1 tending to +∞ or to −∞. Typically, these strong limits (if they exist)
are simpler than the original operator A, but still keep much information about A. For instance V−hk K Vhk tends strongly
to the zero operator for every compact operator K on the standard Lebesgue space and V−hk (aP + Q )Vhk tends strongly to
al P + Q for hk → −∞ and to ar P + Q for hk → +∞. For a detailed discussion of the method of limit operators, we refer
to the monograph by Rabinovich, Roch, and Silbermann [33].

On variable Lebesgue spaces L p(·)(R) the translation operator Vh is, in general, unbounded. So the method of the
proof of Theorem 1.2 presented in [6, Section 18.4] should be adjusted accordingly. To this end, we combine ideas from



A.Yu. Karlovich, I.M. Spitkovsky / J. Math. Anal. Appl. 384 (2011) 706–725 709
[6, Section 18.4] and [34] (see also [35]). A key lemma concerns the behavior of the sequence ‖Vhk wk‖p(·) , where the func-
tions wk are nice (continuous and decaying faster than |x| as |x| → +∞): if wk converges to w and p(hk) converges to
q ∈ (1,∞), then ‖Vhk wk‖p(·) converges to the norm of w on the standard Lebesgue space Lq(R). This fact was proved
by Rabinovich and Samko [34, Proposition 6.3] for exponents having finite limits at infinity; we relax this hypothesis and
assume only that p ∈ SO.

The paper is organized as follows. Section 2 contains the proof of Lemma 1.1. In Section 3 we collect auxiliary material
on Fredholmness, the injectivity and surjectivity moduli and their relation with invertibility, some fundamental properties
of variable Lebesgue spaces. Further, we prove that P and Q are projections on variable Lebesgue spaces and calculate the
adjoint operator of aP + bQ with a,b ∈ L∞

N×N (R). We prove that the sequence KχR\[−n,n] I converges uniformly to the zero
operator whenever K is compact on L p(·)(R). We finish this section with a property of slowly oscillating functions and an
implicit sequence lemma. Both statements play an important role in the proof of the key lemma given in Section 4.

The final Section 5 is devoted to the proof of Theorem 1.2. Let us briefly outline its main steps. First we approximate the
operator A = aP + Q by the operators A j = a j P + Q where a j has the same form as a, but with polynomial almost-periodic

representatives a( j)
l and a( j)

r at −∞ and +∞, respectively. Let Ψn = diag{χR\[−n,n] I, . . . ,χR\[−n,n] I}. Since the norm of KΨn

is small whenever n is large, from the Fredholmness of A we arrive at an a priori estimate

‖Ψn f ‖
L p(·)

N (R)
� const‖A jΨn f ‖

L p(·)
N (R)

for f ∈ Lp(·)
N (R) (1.2)

and large fixed j, n. By the corollary of Kronecker’s theorem there exists a sequence hm → +∞ such that∥∥a( j)
r (· + hm) − a( j)

r (·)∥∥L∞
N×N (R)

→ 0 as m → ∞. (1.3)

If ϕ is smooth and compactly supported, ϕ ∈ [C∞
c (R)]N , then Ψn Vhmϕ = Vhmϕ for large m. Hence (1.2) implies that

‖Vhmϕ‖
L p(·)

N (R)
� const

∥∥Vhm(V−hm A j Vhmϕ)
∥∥

L p(·)
N (R)

for ϕ ∈ [
C∞

c (R)
]

N . (1.4)

Since the sequence {p(hm)} is bounded, we can extract its subsequence {p(hmk )} that converges to a certain number qr .

Taking into account (1.3), we show that the sequence wk = V−hmk
A j Vhmk

ϕ and the function w := (a( j)
r P + Q )ϕ satisfy the

hypotheses of the key lemma. Passing to the limit in (1.4) along the subsequence {hmk } as k → ∞, and then replacing a( j)
r

by ar , we arrive at

‖ϕ‖Lqr
N (R) � const

∥∥(ar P + Q )ϕ
∥∥

Lqr
N (R)

for ϕ ∈ [
C∞

c (R)
]

N . (1.5)

Applying duality arguments, we also obtain an a priori estimate for the adjoint operator:

‖ϕ‖
L

q′
r

N (R)
� const

∥∥(ar P + Q )∗ϕ
∥∥

L
q′

r
N (R)

for ϕ ∈ [
C∞

c (R)
]

N (1.6)

where q′
r = qr/(qr − 1). Since C∞

c (R) is dense both in L p(·)(R) and in its dual space L p′(·)(R) whenever (1.1) is fulfilled, from
(1.5)–(1.6) it follows that the operator ar P + Q is invertible on Lqr

N (R).

2. Nontriviality of the class E

2.1. The Hardy–Littlewood maximal operator and the Cauchy singular integral operator

Given f ∈ L1
loc(R), the Hardy–Littlewood maximal operator M is defined by

(M f )(x) := sup
Q �x

1

|Q |
∫
Q

∣∣ f (y)
∣∣dy

where the supremum is taken over all intervals Q ⊂ R containing x. From [11, Theorem 4.8] (see also [20, Theorem 2.7])
and [10, Theorem 8.1] one can extract the following.

Theorem 2.1. Let p : R → [1,∞] be a measurable function satisfying (1.1). If the Hardy–Littlewood maximal operator M is bounded
on L p(·)(R), then the Cauchy singular integral operator S is bounded on L p(·)(R).

Note that in the majority of papers dealing with the boundedness of the Hardy–Littlewood maximal operator it is sup-
posed that the exponent has a finite limit at infinity (see, e.g., [7–9,16,23] and the references therein). We refer also to
[28,29], where this condition was weakened and to the recent monograph [12] for the detailed treatment of these ques-
tions.
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2.2. Lerner’s example

One interesting class of variable exponents such that M is bounded on L p(·)(R) was considered by Lerner [27]. Among
other things he proved the following.

Theorem 2.2 (Lerner). There exists an α > 2 such that the Hardy–Littlewood maximal operator M is bounded on the variable Lebesgue
space L pL (·)(R) with

pL(x) := α + sin
(
log

(
log |x|)χ{x∈R: |x|�e}(x)

)
(x ∈ R).

Lemma 2.3. The exponent pL satisfies (1.1) and belongs to SO \ C(Ṙ).

Proof. It is clear that pL ∈ C(R) and pL is even. Moreover,

lim
x→+∞ x

dpL(x)

dx
= lim

x→+∞
cos(log(log x))

log x
= 0.

Then (see, e.g., [2, pp. 154–155 and p. 158]) pL ∈ SO. Obviously,

lim inf
x→+∞ pL(x) = inf

x∈R

pL(x) = α − 1 > 1, lim sup
x→+∞

pL(x) = sup
x∈R

pL(x) = α + 1 < ∞.

Thus pL satisfies (1.1) and pL /∈ C(Ṙ). �
Lemma 1.1 follows from Theorems 2.1–2.2 and Lemma 2.3.

3. Auxiliary results

3.1. Fredholmness

Recall the following well-known fact, which follows from Atkinson’s theorem (see, e.g., [14, Chap. 4, Theorem 6.1]).

Lemma 3.1. Let X be a Banach space and A, B ∈ B(X). If A is Fredholm on X and B is invertible on X, then AB and B A are Fredholm
on X.

The next statement is about Fredholmness of adjoints.

Theorem 3.2. (See, e.g., [14, Section 4.15].) Let X be a Banach space and A ∈ B(X). Then A is Fredholm on X if and only if its adjoint
A∗ is Fredholm on the dual space X∗ .

Let A ∈ B(X). An operator R ∈ B(X) is said to be a left (resp. right) regularizer of A if R A − I ∈ K(X) (resp. AR − I ∈
K(X)). If R is a left and right regularizer of A, then we say that R is a two-sided regularizer of A.

Theorem 3.3. (See, e.g., [14, Chap. 4, Theorem 7.1].) Let X be a Banach space. An operator A ∈ B(X) is Fredholm on X if and only if
there exists a two-sided regularizer of A.

3.2. Injection and surjection moduli

Let A ∈ B(X). Following [30, Sections B.3.1 and B.3.4], consider its injection modulus

J (A; X) := sup
{

c � 0: ‖A f ‖X � c‖ f ‖X for all f ∈ X
}

and its surjection modulus

Q(A; X) := sup{c � 0: cB X ⊂ AB X }
where B X is the closed unit ball of X . Sometimes these characteristics are also called lower norms of A (see, e.g., [26,
Section 1.3]). Fundamental properties of the injection and surjection moduli are collected in the following statements.

Lemma 3.4. (See, e.g., [30, Section B.3.8].) If A ∈ B(X), then

J (A; X) = Q
(

A∗; X∗), Q(A; X) = J
(

A∗; X∗).
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Lemma 3.5. (See, e.g., [26, Proposition 1.3.7].) If A, B ∈ B(X), then

J (A; X) · J (B; X) � J (AB; X), Q(A; X) · Q(B; X) � Q(AB; X).

Theorem 3.6. (See, e.g., [26, Theorem 1.3.2].) An operator A ∈ B(X) is invertible if and only if

J (A; X) > 0, Q(A; X) > 0.

If A is invertible, then

J (A; X) = Q(A; X) = 1

‖A−1‖B(X)

.

3.3. Some fundamental properties of variable Lebesgue spaces

Let C∞
c (R) be the set of all infinitely differentiable functions with compact support. The following results were proved

in [24, Theorems 2.4, 2.6, and 2.11].

Theorem 3.7. Let p : R → [1,∞] be a measurable function satisfying (1.1) and fn ∈ L p(·)(R). Then

(a) the set C∞
c (R) is dense in L p(·)(R);

(b) limn→∞ I p(·)( fn) = 0 if and only if limn→∞ ‖ fn‖p(·) = 0;
(c) for every continuous linear functional G on L p(·)(R) there exists a unique function g ∈ L p′(·)(R) such that

G( f ) =
∫
R

f (x)g(x)dx for f ∈ Lp(·)(R)

and the norms ‖G‖ and ‖g‖p′(·) are equivalent.

Corollary 3.8. Let p : R → [1,∞] be a measurable function satisfying (1.1). For every continuous linear functional G on L p(·)
N (R) there

exists a unique function g = (g1, . . . , gN) ∈ L p′(·)
N (R) such that

G( f ) =
N∑

α=1

∫
R

fα(x)gα(x)dx =: 〈 f , g〉 (3.1)

for all f = ( f1, . . . , f N ) ∈ L p(·)
N (R). The norms of ‖G‖ and ‖g‖

Lp′(·)
N (R)

are equivalent.

3.4. Singular integral operators and their adjoints

For a ∈ L∞
N×N(R), let a∗ denote the complex conjugate of the transpose matrix function aT.

Lemma 3.9. Let p : R → [1,∞] be a measurable function satisfying (1.1). If a ∈ L∞
N×N (R), then

(aI)∗ = a∗ I ∈ B
(
Lp′(·)

N (R)
)
.

Proof. Let 〈·,·〉 be the pairing defined by (3.1) and f ∈ L p(·)
N (R), g ∈ L p′(·)

N (R). Then

〈af , g〉 =
N∑

α=1

∫
R

(
N∑

β=1

aαβ(x) fβ(x)

)
gα(x)dx =

N∑
β=1

∫
R

(
N∑

α=1

aαβ(x)gα(x)

)
fβ(x)dx

=
N∑

α=1

∫
R

(
N∑

β=1

aβα(x)gβ(x)

)
fα(x)dx =

N∑
α=1

∫
R

fα(x)

(
N∑

β=1

aβα(x)gβ(x)

)
dx = 〈

f ,a∗g
〉
,

which completes the proof in view of Corollary 3.8. �
Lemma 3.10. If p ∈ E , then P , Q ∈ B(L p(·)

(R)) and P 2 = P , Q 2 = Q .
N
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Proof. Since the operators S , P , and Q are defined elementwise, it is sufficient to prove the statement for N = 1. It is well
known (see, e.g., [13, formula (3.5)]) that

S2ϕ = ϕ for ϕ ∈ L2(R).

In particular, the above formula holds for all ϕ ∈ C∞
c (R). Let f ∈ L p(·)(R). By Theorem 3.7(a), there exists a sequence

{ϕn}∞n=1 ⊂ C∞
c (R) such that

lim
n→∞‖ f − ϕn‖p(·) = 0. (3.2)

Since p ∈ E , we conclude that S2 ∈ B(L p(·)(R)). Hence

lim
n→∞

∥∥S2 f − S2ϕn
∥∥

p(·) �
∥∥S2

∥∥
B(L p(·)(R))

lim
n→∞‖ f − ϕn‖p(·) = 0. (3.3)

Passing to the limit in the equality S2ϕn = ϕn as n → ∞ and taking into account (3.2)–(3.3), we arrive at S2 f = f for
f ∈ L p(·)(R), that is, S2 = I on L p(·)(R). This immediately implies that P 2 = P and Q 2 = Q . �
Lemma 3.11. If p ∈ E , then p′ ∈ E and

S∗ = S, P∗ = P , Q ∗ = Q

belong to B(L p′(·)
N (R)).

Proof. Since the operators S , P , and Q are defined elementwise on L p(·)(R), it is sufficient to prove the statement for
N = 1. It is well known that for ϕ,ψ ∈ L2(R),∫

R

(Sϕ)(x)ψ(x)dx =
∫
R

ϕ(x)(Sψ)(x)dx

(see, e.g., [13, formula (3.6)]). In particular, this equality holds for all ϕ,ψ ∈ C∞
c (R). This means that S is a self-adjoint

and densely defined operator on L p(·)(R) and L p′(·)(R) (see Theorem 3.7(a)). By the standard argument (see [22, Chap. III,
Section 5.5]), one can show that S = S∗ ∈ B(L p′(·)(R)) because S ∈ B(L p(·)(R)). This yields p′ ∈ E and also the equalities

P∗ = (I + S)∗/2 = (I + S)/2 = P , Q ∗ = (I − S)∗/2 = (I − S)/2 = Q ,

which finishes the proof. �
From Lemmas 3.9 and 3.11 we immediately get the following.

Corollary 3.12. If p ∈ E and a,b ∈ L∞
N×N (R), then

(aP + bQ )∗ = Pa∗ I + Q b∗ I ∈ B
(
Lp′(·)

N (R)
)
.

The proof of the next statement is a matter of a straightforward calculation and application of Lemma 3.10 when neces-
sary.

Lemma 3.13. If p ∈ E and a ∈ L∞
N×N (R), then

(I ± PaQ )−1 = I ∓ PaQ , (I ± Q aP )−1 = I ∓ Q aP , (3.4)

and

PaI + Q = (I + PaQ )(aP + Q )(I − Q aP ), P + Q aI = (I + Q aP )(P + aQ )(I − PaQ ).

3.5. Compact operators and convergence of sequences of operators

Lemma 3.14. (See, e.g., [36, Lemma 1.4.7].) Let X be a Banach space. Suppose A, B ∈ B(X), and An, Bn ∈ B(X) for all n ∈ N. If
K ∈ K(X) and if An → A and B∗

n → B∗ strongly as n → ∞, then ‖An K Bn − AK B‖B(X) → 0 as n → ∞.
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Let χE be the characteristic function of a set E ⊂ R.

Lemma 3.15. Let p : R → [1,∞] be a measurable function satisfying (1.1). For n ∈ N and x ∈ R, put

ψn(x) := 1 − χ[−1,1](x/n).

(a) The sequence {ψn I}∞n=1 converges strongly to the zero operator on L p(·)(R) and on L p′(·)(R) as n → ∞.
(b) If K ∈ K(L p(·)(R)), then

lim
n→∞‖Kψn I‖B(L p(·)(R)) = 0.

Proof. (a) If 1 < ess infx∈R p(x), then ess supx∈R p′(x) < ∞. Therefore, by Theorem 3.7(a)–(b), it is sufficient to prove that

lim
n→∞ I p(·)(ψn f ) = 0 for all f ∈ C∞

c (R). (3.5)

Suppose f ∈ C∞
c (R). Then there exists n0 ∈ N such that supp f ⊂ [−n0,n0]. Then for all n � n0,

I p(·)(ψn f ) =
∫
R

∣∣(1 − χ[−1,1](x/n)
)

f (x)
∣∣p(x)

dx =
∫
R

∣∣χR\[−n,n](x) f (x)
∣∣p(x)

dx =
∫

R\[−n,n]

∣∣ f (x)
∣∣p(x)

dx = 0.

Thus I p(·)(ψn f ) = 0 for all n � n0, which finishes the proof of (3.5). Part (a) is proved.
(b) From Theorem 3.7(c) it follows that (ψn I)∗ = ψn I ∈ B(L p′(·)(R)). By part (a), the sequence {(ψn I)∗}∞n=1 converges

strongly to the zero operator. It remains to apply Lemma 3.14. �
3.6. Important property of slowly oscillating functions

The following statement is proved by analogy with [3, Proposition 4(ii)].

Lemma 3.16. Let f ∈ SO. Suppose {hk}∞k=1 ⊂ R is a sequence tending to +∞ (resp. to −∞) and such that the limit

lim
k→∞

f (hk) =: g (3.6)

exists. Then for every R > 0,

lim
k→∞

sup
x∈[−R,R]

∣∣ f (x + hk) − g
∣∣ = 0. (3.7)

Proof. For every k ∈ N,

sup
x∈[−R,R]

∣∣ f (x + hk) − g
∣∣ � sup

x∈[−R,R]
∣∣ f (x + hk) − f (hk)

∣∣ + ∣∣ f (hk) − g
∣∣

� sup
x,y∈[hk−R,hk+R]

∣∣ f (x) − f (y)
∣∣ + ∣∣ f (hk) − g

∣∣. (3.8)

Let for definiteness limk→∞ hk = −∞. Then there exists a k0 ∈ N such that hk � −3R for all k � k0. Therefore 2(hk + R) �
hk − R and[

2(hk + R),hk + R
] ⊃ [hk − R,hk + R].

Thus for k � k0,

sup
x,y∈[hk−R,hk+R]

∣∣ f (x) − f (y)
∣∣ � sup

x,y∈[2(hk+R),hk+R]
∣∣ f (x) − f (y)

∣∣
� osc

(
f ,

[
2(hk + R),hk + R

] ∪ [−(hk + R),−2(hk + R)
])

. (3.9)

Since f ∈ SO, the latter oscillation tends to zero as k → ∞. Combining this observation with (3.6) and (3.8)–(3.9), we arrive
at (3.7). �
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3.7. Lemma on an implicit sequence

We will need the following result from Elementary Calculus. Put R+ := (0,+∞) and R− := (−∞,0).

Lemma 3.17. Let F : R+ × (N ∪ {∞}) → R+ be a function such that

(i) for every k ∈ N ∪ {∞}, the function F (·,k) is continuous and strictly decreasing;
(ii) for every λ ∈ R+ ,

lim
k→∞

F (λ,k) = F (λ,∞). (3.10)

If F (λ∞,∞) = 1 for some λ∞ ∈ R+ , then there exist a number k0 ∈ N and a unique sequence {λ(k)}∞k=k0
such that F (λ(k),k) = 1 for

all k � k0 and

lim
k→∞

λ(k) = λ∞. (3.11)

Proof. The proof is developed by analogy with the proof of the lemma from [25, Section 41.1].
Let ε ∈ (0, λ∞/2]. Since F (·,∞) is strictly decreasing,

F (λ∞ + ε,∞) < F (λ∞,∞) = 1 < F (λ∞ − ε,∞). (3.12)

From (3.10) it follows that there exist k+(ε),k−(ε) ∈ N such that∣∣F (λ∞ + ε,∞) − F (λ∞ + ε,k)
∣∣ <

1 − F (λ∞ + ε,∞)

2
(3.13)

for k � k+(ε) and∣∣F (λ∞ − ε,∞) − F (λ∞ − ε,k)
∣∣ <

F (λ∞ − ε,∞) − 1

2
(3.14)

for k � k−(ε). Let

k0(ε) := max
{
k−(ε),k+(ε)

}
, k0 := k0(λ∞/2).

Taking into account (3.12), we obtain from (3.13)–(3.14) that

F (λ∞ + ε,k) <
1 − F (λ∞ + ε,∞)

2
+ F (λ∞ + ε,∞) = 1 + F (λ∞ + ε,∞)

2
< 1,

F (λ∞ − ε,k) > F (λ∞ − ε,∞) − F (λ∞ − ε,∞) − 1

2
= 1 + F (λ∞ − ε,∞)

2
> 1.

Thus, for all k � k0(ε),

F (λ∞ + ε,k) < 1 < F (λ∞ − ε,k). (3.15)

Since F (·,k) is continuous in the first variable for every fixed k, from (3.15) we see, by the Bolzano–Cauchy intermediate
value theorem, that there exists a λ(k) such that F (λ(k),k) = 1 and

λ∞ − ε < λ(k) < λ∞ + ε. (3.16)

The value λ(k) is unique for every k because F (·,k) is strictly decreasing. Thus, for every ε ∈ (0, λ∞/2], there exists a
number k0(ε) ∈ N such that for all k � k0(ε), inequality (3.16) holds, which implies (3.11). �
4. Norms of translations of decaying continuous functions

4.1. Technical lemma

We start with the following technical statement.

Lemma 4.1. Suppose p : R → (1,∞) belongs to SO and satisfies (1.1). Let {hk}∞k=1 ⊂ R be a sequence tending to +∞ (resp. to −∞)
and such that the limit

lim p(hk) =: q

k→∞
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exists. Suppose R > 0 and {wk}∞k=1 ⊂ C(R) is a sequence which converges pointwise to a function w ∈ C(R) on the segment [−R, R].
If there are positive constants C1 < C2 and a measurable set 
 ⊂ [−R, R] such that for all sufficiently large k and all x ∈ [−R, R] \ 
,

C1 � wk(x) � C2, C1 � w(x) � C2, (4.1)

then for every λ ∈ R+ ,

lim
k→∞

∫
[−R,R]\


∣∣∣∣ wk(x)

λ

∣∣∣∣p(x+hk)

dx =
∫

[−R,R]\


∣∣∣∣ w(x)

λ

∣∣∣∣q

dx. (4.2)

Proof. The proof is based on the Lebesgue bounded convergence theorem (see, e.g., [1, Theorem 10.29]). Let us show that
for all λ ∈ R+ and all x ∈ [−R, R] \ 
,

lim
k→∞

∣∣∣∣ wk(x)

λ

∣∣∣∣p(x+hk)

=
∣∣∣∣ w(x)

λ

∣∣∣∣q

. (4.3)

By the mean value theorem,∣∣∣∣ wk(x)

λ

∣∣∣∣p(x+hk)

−
∣∣∣∣ w(x)

λ

∣∣∣∣q

= exp

(
p(x + hk) log

∣∣∣∣ wk(x)

λ

∣∣∣∣) − exp

(
q log

∣∣∣∣ w(x)

λ

∣∣∣∣)
= eξ

(
p(x + hk) log

∣∣∣∣ wk(x)

λ

∣∣∣∣ − q log

∣∣∣∣ w(x)

λ

∣∣∣∣),

where ξ is some real number between

p(x + hk) log

∣∣∣∣ wk(x)

λ

∣∣∣∣ and q log

∣∣∣∣ w(x)

λ

∣∣∣∣.
Taking into account that there exists a k0 ∈ N such that for all k � k0 inequalities (4.1) are fulfilled, we have

p(x + hk) log

∣∣∣∣ wk(x)

λ

∣∣∣∣ � p(x + hk) log
C2

λ
� p(x + hk)

∣∣∣∣log
C2

λ

∣∣∣∣ � p+
∣∣∣∣log

C2

λ

∣∣∣∣
and

q log

∣∣∣∣ w(x)

λ

∣∣∣∣ � q log
C2

λ
� q

∣∣∣∣log
C2

λ

∣∣∣∣ � p+
∣∣∣∣log

C2

λ

∣∣∣∣.
Hence

ξ � p+
∣∣∣∣log

C2

λ

∣∣∣∣ and eξ � exp

(
p+

∣∣∣∣log
C2

λ

∣∣∣∣) =: C3.

Then for all k � k0,∣∣∣∣∣∣∣∣ wk(x)

λ

∣∣∣∣p(x+hk)

−
∣∣∣∣ w(x)

λ

∣∣∣∣q∣∣∣∣ � C3

∣∣∣∣p(x + hk) log

∣∣∣∣ wk(x)

λ

∣∣∣∣ − q log

∣∣∣∣ w(x)

λ

∣∣∣∣∣∣∣∣
� C3

∣∣p(x + hk) − q
∣∣∣∣∣∣log

∣∣∣∣ wk(x)

λ

∣∣∣∣∣∣∣∣ + C3q

∣∣∣∣log

∣∣∣∣ wk(x)

λ

∣∣∣∣ − log

∣∣∣∣ w(x)

λ

∣∣∣∣∣∣∣∣. (4.4)

Further, we have

log

∣∣∣∣ wk(x)

λ

∣∣∣∣ � log
C2

λ
�

∣∣∣∣log
C2

λ

∣∣∣∣ � max

{∣∣∣∣log
C1

λ

∣∣∣∣, ∣∣∣∣log
C2

λ

∣∣∣∣},

log

∣∣∣∣ wk(x)

λ

∣∣∣∣ � log
C1

λ
� −

∣∣∣∣log
C1

λ

∣∣∣∣ � −max

{∣∣∣∣log
C1

λ

∣∣∣∣, ∣∣∣∣log
C2

λ

∣∣∣∣}.

Therefore, for all k � k0,∣∣∣∣log

∣∣∣∣ wk(x)

λ

∣∣∣∣∣∣∣∣ � max

{∣∣∣∣log
C1

λ

∣∣∣∣, ∣∣∣∣log
C2

λ

∣∣∣∣} =: C4 < ∞. (4.5)
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Applying the main value theorem once again, we see that

log

∣∣∣∣ wk(x)

λ

∣∣∣∣ − log

∣∣∣∣ w(x)

λ

∣∣∣∣ = 1

ζ

(∣∣wk(x)
∣∣ − ∣∣w(x)

∣∣),
where ζ is some number between |wk(x)| and |w(x)|. Hence ζ ∈ [C1, C2]. Then for all k � k0,∣∣∣∣log

∣∣∣∣ wk(x)

λ

∣∣∣∣ − log

∣∣∣∣ w(x)

λ

∣∣∣∣∣∣∣∣ � 1

C1

∣∣∣∣wk(x)
∣∣ − ∣∣w(x)

∣∣∣∣ � 1

C1

∣∣wk(x) − w(x)
∣∣. (4.6)

Combining (4.4)–(4.6), we arrive at∣∣∣∣∣∣∣∣ wk(x)

λ

∣∣∣∣p(x+hk)

−
∣∣∣∣ w(x)

λ

∣∣∣∣q∣∣∣∣ � C3C4
∣∣p(x + hk) − q

∣∣ + C3q

C1

∣∣wk(x) − w(x)
∣∣ (4.7)

for all k � k0. From Lemma 3.16 it follows that

lim
k→∞

∣∣p(x + hk) − q
∣∣ = 0. (4.8)

But it is given that

lim
k→∞

∣∣wk(x) − w(x)
∣∣ = 0. (4.9)

Thus, from inequality (4.7) and equalities (4.8)–(4.9) we immediately get (4.3).
Further, for every x ∈ [−R, R] \ 
 and k � k0,∣∣∣∣ wk(x)

λ

∣∣∣∣p(x+hk)

�
(

C2

λ

)p(x+hk)

�
(

max

{
1,

C2

λ

})p(x+hk)

�
(

max

{
1,

C2

λ

})p+

because p(x + hk) � p+ . Thus, the sequence |wk(x)/λ|p(x+hk) is uniformly bounded and converges pointwise to |w(x)/λ|q .
By the Lebesgue bounded convergence theorem, this yields (4.2). �
4.2. Key lemma

The key to the proof of Theorem 1.2 is the following generalization of the one-dimensional version of [34, Proposi-
tion 6.3]. Note that conditions on p imposed in [34] imply that p ∈ C(Ṙ). For the readers’ convenience, we provide here a
detailed proof in our more general situation, though the outline remains more or less the same as in [34].

Lemma 4.2. Suppose p : R → (1,∞) belongs to SO and satisfies (1.1). Let {hk}∞k=1 ⊂ R be a sequence tending to +∞ (resp. to −∞)
and such that the limit

lim
k→∞

p(hk) =: q

exists. Suppose w ∈ C(R) and {wk}∞k=1 ⊂ C(R) are such that

(i) for all x ∈ R,

lim
k→∞

wk(x) = w(x),

and this convergence is uniform on each closed segment J ⊂ R+;
(ii) there exists a constant C > 0 such that for all k ∈ N and x ∈ R,∣∣w(x)

∣∣ � C

1 + |x| ,
∣∣wk(x)

∣∣ � C

1 + |x| .

Then

lim
k→∞

‖Vhk wk‖p(·) = ‖w‖q. (4.10)

Proof. For λ > 0 and k ∈ N, put

F (λ,k) :=
∫ ∣∣∣∣ (Vhk wk)(x)

λ

∣∣∣∣p(x)

dx =
∫ ∣∣∣∣ wk(x)

λ

∣∣∣∣p(x+hk)

dx, F (λ,∞) :=
∫ ∣∣∣∣ w(x)

λ

∣∣∣∣q

dx = λ−q‖w‖q
q.
R R R
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First, let us show that for every λ > 0,

lim
k→∞

F (λ,k) = F (λ,∞). (4.11)

Fix some numbers R > 0 and δ > 0. We will specify the choice of R and δ later. Consider the (possibly empty) set


δ := {
x ∈ [−R, R]: ∣∣w(x)

∣∣ � 2δ
}

(4.12)

and put

T R(λ,k) :=
∫

|x|>R

∣∣∣∣ wk(x)

λ

∣∣∣∣p(x+hk)

dx, T R(λ,∞) :=
∫

|x|>R

∣∣∣∣ w(x)

λ

∣∣∣∣q

dx,

Lδ,R(λ,k) :=
∫

δ

∣∣∣∣ wk(x)

λ

∣∣∣∣p(x+hk)

dx, Lδ,R(λ,∞) :=
∫

δ

∣∣∣∣ w(x)

λ

∣∣∣∣q

dx,

and

Dδ,R(λ,k) :=
∣∣∣∣ ∫
[−R,R]\
δ

∣∣∣∣ wk(x)

λ

∣∣∣∣p(x+hk)

dx −
∫

[−R,R]\
δ

∣∣∣∣ w(x)

λ

∣∣∣∣q

dx

∣∣∣∣.
Here “T ” is for “tail”, “L” is for “little”, and “D” is for “difference”. It is clear that∣∣F (λ,k) − F (λ,∞)

∣∣ � T R(λ,k) + T R(λ,∞) + Lδ,R(λ,k) + Lδ,R(λ,∞) + Dδ,R(λ,k). (4.13)

Fix ε > 0. First we will show that it is possible to choose R so large that for k ∈ N,

T R(λ,k) + T R(λ,∞) < ε/3. (4.14)

Let for the moment R � C/λ. Then from (1.1) and hypothesis (ii) we obtain∣∣∣∣ wk(x)

λ

∣∣∣∣p(x+hk)

�
(

C

λ|x|
)p(x+hk)

�
(

C

λ|x|
)p−

for |x| � R.

Then for λ > 0, k ∈ N, and R � C/λ,

T R(λ,k) �
∫

|x|>R

(
C

λ|x|
)p−

dx = 2

(
C

λ

)p− +∞∫
R

dx

xp− = 2

p− − 1

(
C

λ

)p−
R1−p− (4.15)

and analogously

T R(λ,∞) � 2

p− − 1

(
C

λ

)p−
R1−p− (4.16)

(recall that q � p− > 1). We choose R as the solution of the equation

4

p− − 1

(
C

λ

)p−
R1−p− = ε

6
. (4.17)

Then from inequalities (4.15)–(4.16) it follows that inequality (4.14) holds.
It remains to show that for so chosen R one has R � C/λ whenever ε is sufficiently small. Indeed, from (4.17) we obtain

R =
(

24

p− − 1

)1/(p−−1)( C

λ

)p−/(p−−1)(1

ε

)1/(p−−1)

, (4.18)

and R � C/λ is equivalent to(
24

p− − 1

)1/(p−−1) C

λ
� ε1/(p−−1).

That is, if

0 < ε � 24

p− − 1

(
C

λ

)p−−1

=: ε1,

then R given by (4.18) satisfies R � C/λ and inequality (4.14) holds.
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Now we will choose δ > 0 and k0 ∈ N such that for k � k0,

Lδ,R(λ,k) + Lδ,R(λ,∞) < ε/3. (4.19)

Let for the moment δ be so that 3δ/λ � 1. For R and δ, by hypothesis (i), there exists a k0 := k0(ε) = k0(δ, R) ∈ N such that
for all x ∈ [−R, R] and all k � k0,∣∣wk(x) − w(x)

∣∣ < δ.

Hence, for all k � k0,∣∣w(x)
∣∣ − δ �

∣∣wk(x)
∣∣ �

∣∣w(x)
∣∣ + δ. (4.20)

From (4.12) and (4.20) we see that for k � k0 and x ∈ 
δ ,∣∣∣∣ w(x)

λ

∣∣∣∣ � 2δ

λ
,

∣∣∣∣ wk(x)

λ

∣∣∣∣ � 3δ

λ
.

Hence, taking into account that p(x + hk) > 1 and q > 1, we have for k � k0,

Lδ,R(λ,k) �
∫

δ

(
3δ

λ

)p(x+hk)

dx � 3δ

λ

∫

δ

dx � 6δR

λ
, (4.21)

Lδ,R(λ,∞) �
∫

δ

(
2δ

λ

)q

dx � 2δ

λ

∫

δ

dx � 4δR

λ
. (4.22)

Let us choose δ as the solution of the equation

10δR

λ
= ε

6
. (4.23)

Then from inequalities (4.21)–(4.22) it follows that inequality (4.19) is fulfilled for all k � k0.
It remains to show that we can guarantee that 3δ/λ � 1 whenever ε is sufficiently small. Indeed, from (4.18) and (4.23)

we see that

3δ

λ
= ε

20R
= ε

20

(
p− − 1

24

)1/(p−−1)(
λ

C

)p−/(p−−1)

ε1/(p−−1) � 1

is equivalent to

ε2/(p−−1) � 20

(
24

p− − 1

)1/(p−−1)( C

λ

)p−/(p−−1)

.

That is, if

0 < ε � 20(p−−1)/2
(

24

p− − 1

)1/2( C

λ

)p−/2

=: ε2,

then 3δ/λ � 1. Thus, if ε ∈ (0,min{ε1, ε2}), then we can choose R > 0 by (4.18), δ > 0 as the solution of (4.23), and then
choose a k0 = k0(δ, R) such that for all k � k0, inequalities (4.14) and (4.19) are fulfilled. From (4.13), (4.14), and (4.19) we
get ∣∣F (λ,k) − F (λ,∞)

∣∣ � 2ε/3 + Dδ,R(λ,k) for k � k0. (4.24)

From (4.12) and (4.20) it follows that for x ∈ [−R, R] \ 
δ and k � k0,

2δ <
∣∣w(x)

∣∣ � C, δ <
∣∣w(x)

∣∣ � C .

From Lemma 4.1 we deduce that there exists k1(ε) � k0 such that

Dδ,R(λ,k) < ε/3 for k � k1(ε). (4.25)

Combining (4.24) and (4.25), we see that for ε > 0 there exists a k1(ε) ∈ N such that for all k � k1(ε),∣∣F (λ,k) − F (λ,∞)
∣∣ < ε,

which finishes the proof of (4.11).
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If the limit function w is equal to zero identically on R, then from equality (4.11) we have

lim
k→∞

I p(·)(Vhk wk) = 0.

Then from Theorem 3.7(b) we obtain that

lim
k→∞

‖Vhk wk‖p(·) = 0 = ‖w‖q,

which finishes the proof of the lemma in the case ‖w‖q = 0.
Assume now that ‖w‖q > 0. Then, obviously, the function F (λ,∞) = λ−q‖w‖q is strictly decreasing and continuous in

λ ∈ R. Moreover,

F
(‖w‖q,∞

) = 1. (4.26)

Without loss of generality we may assume that all functions wk are not identically zero on R. Let us show that for each
k ∈ N, the function F (λ,k) is strictly decreasing and continuous with respect to λ ∈ R+ . Clearly, for every k ∈ N, x ∈ R, and
λ ∈ R+ ,

∂

∂λ

∣∣∣∣ wk(x)

λ

∣∣∣∣p(x+hk)

= − p(x + hk)

λ

∣∣∣∣ wk(x)

λ

∣∣∣∣p(x+hk)

.

Let [α,β] ⊂ R+ be some segment. It is not difficult to see that for all λ ∈ [α,β],∣∣∣∣ ∂

∂λ

∣∣∣∣ wk(x)

λ

∣∣∣∣p(x+hk)
∣∣∣∣ � p+

α

∣∣∣∣ wk(x)

λ

∣∣∣∣p(x+hk)

= p+
α

F (α,k) < ∞.

Therefore, by the theorem on the differentiation under the sign of the Lebesgue integral (see, e.g., [1, Theorem 10.39]), the
function F (λ,k) is differentiable in λ ∈ (α,β) and

∂ F

∂λ
(λ,k) = −

∫
R

p(x + hk)

λ

∣∣∣∣ wk(x)

λ

∣∣∣∣p(x+hk)

dx.

Since [α,β] was chosen arbitrarily, we conclude that F (λ,k) is differentiable in the first variable on R+ and

∂ F

∂λ
(λ,k) < 0 for λ ∈ R+.

Thus, F (λ,k) is strictly increasing and continuous in λ ∈ R+ . From this observation, (4.11), and (4.26) we obtain in view of
Lemma 3.17 that there exist a number k2 ∈ N and a unique sequence {λ(k)}∞k=k2

such that F (λ(k),k) = 1 for all k � k2 and

lim
k→∞

λ(k) = ‖w‖q. (4.27)

On the other hand, taking into account that F (λ,k) is strictly decreasing and continuous, we see that

‖Vhk wk‖p(·) = inf
{
λ > 0: F (λ,k) � 1

} = λ(k). (4.28)

Combining (4.27) and (4.28), we arrive at (4.10). �
5. Proof of the main result

5.1. Verification of the hypotheses of the key lemma

We start with the following consequence of the Kronecker theorem on almost periodic functions (see, e.g., [6, Theo-
rem 1.12]).

Lemma 5.1. (See [6, Lemma 10.2].) If a1, . . . ,aM ∈ AP0
N×N is a finite collection of almost periodic polynomials, then there exists a

sequence {hm}∞m=1 ⊂ R such that hm → +∞ (resp. hm → −∞) as m → ∞ and

lim
m→∞

∥∥a j(· + hm) − a j(·)
∥∥

L∞
N×N (R)

= 0

for all j ∈ {1, . . . , M}.
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The operator S behaves extremely well on smooth compactly supported functions. More precisely, we have the following.

Lemma 5.2. If ϕ ∈ C∞
c (R), then Sϕ ∈ C(R) and there is a constant Cϕ > 0 such that∣∣(Sϕ)(x)

∣∣ � Cϕ

1 + |x| (x ∈ R).

Proof. The continuity of Sϕ is a consequence of the Privalov theorem (see, e.g., [38, Chap. II, Section 6.9]). For the pointwise
estimate for Sϕ , see e.g. [15, Exercise 4.1.2(a)]. �

Assume that α,β ∈ {1, . . . , N} and let aαβ denote the (α,β)-entry of a matrix function a ∈ L∞
N×N (R).

Lemma 5.3. Let ϕ ∈ C∞
c (R). Suppose al,ar ∈ AP0

N×N , a0 ∈ [C0]N×N , and

a = (1 − u)al + uar + a0.

Then

(a) there exists a sequence {hm}∞m=1 such that hm → +∞ as m → ∞ and w, {wm}∞m=1 given by

w := (
(ar)αβ P + Q

)
ϕ, wm := V−hm (aαβ P + Q )Vhmϕ (5.1)

or

w := (
(ar)βα P + Q

)
ϕ, wm := V−hm (aβα P + Q )Vhmϕ, (5.2)

where α,β ∈ {1, . . . , N}, satisfy hypotheses (i) and (ii) of Lemma 4.2;
(b) there exists a sequence {hm}∞m=1 such that hm → −∞ as m → ∞ and w, {wm}∞m=1 given by

w := (
(al)αβ P + Q

)
ϕ, wm := V−hm(aαβ P + Q )Vhmϕ

or

w := (
(al)βα P + Q

)
ϕ, wm := V−hm(aβα P + Q )Vhmϕ,

where α,β ∈ {1, . . . , N}, satisfy hypotheses (i) and (ii) of Lemma 4.2.

Proof. (a) By Lemma 5.1, there exists a sequence {hm}∞m=1 such that hm → +∞ and

lim
m→∞

∥∥ar(· + hm) − ar(·)
∥∥

L∞
N×N (R)

= 0. (5.3)

Fix α,β ∈ {1, . . . , N} and consider the pair given in (5.1). It is easy to see that for m ∈ N and x ∈ R,

wm(x) = (V−hm aαβ Vhm Pϕ)(x) + (Q ϕ)(x) = aαβ(x + hm)(Pϕ)(x) + (Q ϕ)(x). (5.4)

From Lemma 5.2 it follows that Pϕ, Q ϕ ∈ C(R) and there exists a constant Cϕ > 0 such that

∣∣(Pϕ)(x)
∣∣ � C̃ϕ

1 + |x| ,
∣∣(Q ϕ)(x)

∣∣ � C̃ϕ

1 + |x| , (5.5)

where C̃ϕ := (Cϕ + ‖ϕ‖∞)/2. From (5.4)–(5.5) it follows that for m ∈ N and x ∈ R,

∣∣wm(x)
∣∣ � ‖aαβ‖∞C̃ϕ

1 + |x| ,
∣∣w(x)

∣∣ � ‖(ar)αβ‖∞C̃ϕ

1 + |x| .

These inequalities mean that hypothesis (ii) of Lemma 4.2 holds for w , wm given by (5.1) with α,β ∈ {1, . . . , N}.
From (5.4) and the representation

a = (1 − u)(al − ar) + a0 + ar

we obtain for every m ∈ N and every x ∈ R,∣∣wm(x) − w(x)
∣∣ = ∣∣aαβ(x + hm) − (ar)αβ(x)

∣∣∣∣(Pϕ)(x)
∣∣

�
(∣∣1 − u(x + hm)

∣∣ + ∣∣(a0)αβ(x + hm)
∣∣ + ∣∣(ar)αβ(x + hm) − (ar)αβ(x)

∣∣)∣∣(Pϕ)(x)
∣∣. (5.6)
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Let J ⊂ R be a closed segment. Since 1 − u(+∞) = 0 and (a0)αβ(+∞) = 0, we have

lim
m→∞ sup

x∈ J

∣∣1 − u(x + hm)
∣∣ = 0, lim

k→∞
sup
x∈ J

∣∣(a0)αβ(x + hm)
∣∣ = 0. (5.7)

From (5.3) we also have

lim
m→∞ sup

x∈ J

∣∣(ar)αβ(x + hm) − (ar)αβ(x)
∣∣ = 0. (5.8)

The first inequality in (5.5) yields

sup
x∈ J

∣∣(Pϕ)(x)
∣∣ � C̃ϕ sup

x∈ J

1

1 + |x| < ∞. (5.9)

From (5.6)–(5.9) we deduce that

lim
m→∞ sup

x∈ J

∣∣wm(x) − w(x)
∣∣ = 0,

which finishes the verification of hypothesis (i) of Lemma 4.2 for w , wm given by (5.1) with α,β ∈ {1, . . . , N}. The proof
for w , wm given by (5.2) is similar. Part (a) is proved. The proof of part (b) is analogous. �
5.2. Proof of Theorem 1.2

(a) The idea of the proof is borrowed from [34, Theorem 6.5]. Since the operator aP + Q is Fredholm on L p(·)
N (R), its

adjoint operator (aP + Q )∗ is Fredholm on the dual space in view of Theorem 3.2. From Corollary 3.12 and Lemma 3.13 it
follows that

(aP + Q )∗ = Pa∗ I + Q = A1
(
a∗ P + Q

)
A2,

where the operators A1 := I + Pa∗ Q and A2 := I − Q a∗ P are invertible on L p′(·)
N (R). From this equality and Lemma 3.1

we deduce that the operator a∗ P + Q is Fredholm on L p′(·)
N (R). Therefore, due to Theorem 3.3, the operator A := aP + Q

admits a left regularizer on L p(·)
N (R) and the operator A′ := a∗ P + Q admits a left regularizer on L p′(·)

N (R). That is, there

exist operators B ∈ B(L p(·)
N (R)), K ∈ K(L p(·)

N (R)) and B ′ ∈ B(L p′(·)
N (R)), K ′ ∈ K(L p′(·)

N (R)) such that

B A − K = I, B ′ A′ − K ′ = I. (5.10)

Since a ∈ SAPN×N , there exist al,ar ∈ APN×N and a0 ∈ [C0]N×N such that

a = (1 − u)al + uar + a0. (5.11)

By the definition of AP, there exist sequences {a( j)
l }∞j=1, {a( j)

r }∞j=1 ⊂ AP0
N×N such that

lim
j→∞

∥∥a( j)
l − al

∥∥
L∞

N×N (R)
= 0, lim

j→∞
∥∥a( j)

r − ar
∥∥

L∞
N×N (R)

= 0. (5.12)

Let a j := (1 − u)a( j)
l + ua( j)

r + a0 and

A j := a j P + Q , A′
j := a∗

j P + Q , R j := a( j)
r P + Q , R ′

j := (
a( j)

r
)∗

P + Q .

Put

J :=
[

lim inf
x→+∞ p(x), lim sup

x→+∞
p(x)

]
, J ′ :=

[
lim inf
x→+∞ p′(x), lim sup

x→+∞
p′(x)

]
.

It is well known that the norm of the operator S on the standard Lebesgue spaces is calculated by

‖S‖B(Lq(R)) =
{

tan π
2q if 1 < q � 2,

cot π
2q if 2 � q < ∞

(see, e.g., [14, Chap. 13, Theorem 1.3]). Hence

sup
q∈ J∪ J ′

max
{‖P‖B(Lq

N (R)),‖Q ‖B(Lq
N (R))

} =: M < ∞.
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If we denote R := ar P + Q and R ′ := a∗
r P + Q , then

sup
q∈ J

‖R − R j‖B(Lq
N (R)) � CN M

∥∥ar − a( j)
r

∥∥
L∞

N×N (R)
, (5.13)

sup
q′∈ J ′

∥∥R ′ − R ′
j

∥∥
B(Lq′

N (R))
� CN M

∥∥ar − a( j)
r

∥∥
L∞

N×N (R)
, (5.14)

where the constant CN > 0 depends only on N . From (5.11)–(5.12) it follows that

‖A − A j‖B(L p(·)
N (R))

<
1

2‖B‖B(L p(·)
N (R))

, (5.15)

∥∥A′ − A′
j

∥∥
B(L p′(·)

N (R))
<

1

2‖B ′‖B(L p′(·)
N (R))

(5.16)

for sufficiently large j. Further, from (5.12)–(5.14) we also deduce that

sup
q∈ J

‖R − R j‖B(Lq
N (R)) <

1

8‖B‖B(L p(·)
N (R))

, (5.17)

sup
q′∈ J ′

∥∥R ′ − R ′
j

∥∥
B(Lq′

N (R))
<

1

8‖B ′‖B(L p′(·)
N (R))

(5.18)

for sufficiently large j. Fix j such that all inequalities (5.15)–(5.18) are fulfilled simultaneously.
From the first equality in (5.10) and (5.15) it follows that for every f ∈ L p(·)

N (R),

‖ f ‖
L p(·)

N (R)
� ‖B‖B(L p(·)

N (R))
‖A f ‖

L p(·)
N (R)

+ ‖K f ‖
L p(·)

N (R)

� ‖B‖B(L p(·)
N (R))

(‖A j f ‖
L p(·)

N (R)
+ ‖A f − A j f ‖

L p(·)
N (R)

) + ‖K f ‖
L p(·)

N (R)

� ‖B‖B(L p(·)
N (R))

‖A j f ‖
L p(·)

N (R)
+ 1

2
‖ f ‖

L p(·)
N (R)

+ ‖K f ‖
L p(·)

N (R)
.

Hence for all f ∈ L p(·)
N (R),

‖ f ‖
L p(·)

N (R)
� 2‖B‖B(L p(·)

N (R))
‖A j f ‖

L p(·)
N (R)

+ 2‖K f ‖
L p(·)

N (R)
. (5.19)

Analogously, from the second equality in (5.10) and (5.16) we obtain for g ∈ L p′(·)
N (R),

‖g‖
L p′(·)

N (R)
� 2

∥∥B ′∥∥
B(L p′(·)

N (R))

∥∥A′
j g

∥∥
L p′(·)

N (R)
+ 2

∥∥K ′g
∥∥

L p′(·)
N (R)

. (5.20)

Let ψn be as in Lemma 3.15. It is clear that Ψn := diag{ψn I, . . . ,ψn I} is an idempotent, that is, Ψ 2
n = Ψn . By

Lemma 3.15(b), there exists an n ∈ N such that

‖KΨn‖B(L p(·)
N (R))

� 1

4
,

∥∥K ′Ψn
∥∥

B(L p′(·)
N (R))

� 1

4
.

Hence for all f ∈ L p(·)
N (R),

‖KΨn f ‖
L p(·)

N (R)
= ∥∥KΨ 2

n f
∥∥

L p(·)
N (R)

� ‖KΨn‖B(L p(·)
N (R))

‖Ψn f ‖
L p(·)

N (R)
� 1

4
‖Ψn f ‖

L p(·)
N (R)

, (5.21)

and similarly, for all g ∈ L p′(·)
N (R),∥∥K ′Ψn g

∥∥
L p′(·)

N (R)
� 1

4
‖Ψn g‖

L p′(·)
N (R)

. (5.22)

From (5.19) and (5.21) it follows that for all f ∈ L p(·)
N (R),

‖Ψn f ‖
L p(·)

N (R)
� 4‖B‖B(L p(·)

N (R))
‖A jΨn f ‖

L p(·)
N (R)

. (5.23)

In the same way, from (5.20) and (5.22) we obtain for all g ∈ L p′(·)
N (R),

‖Ψn g‖ p′(·) � 4
∥∥B ′∥∥

p′(·)
∥∥A′

jΨn g
∥∥

p′(·) . (5.24)

LN (R) B(LN (R)) LN (R)
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Let ϕ ∈ [C∞
c (R)]N . In view of Lemma 5.3(a), there exists a sequence {hm}∞m=1 such that hm → +∞ as m → ∞ and each

of the functions given by

wαβ := ((
a( j)

r
)
αβ

P + Q
)
ϕβ, (wαβ)m := V−hm

(
(a j)αβ P + Q

)
Vhmϕβ

and

w ′
αβ := ((

a( j)
r

)
βα

P + Q
)
ϕβ, (wαβ)′m := V−hm

(
(a j)βα P + Q

)
Vhmϕβ

for α,β ∈ {1, . . . , N} satisfies hypotheses (i) and (ii) of Lemma 4.2.

For h ∈ R, let the translation operator Vh be defined on L p(·)
N (R) and on L p′(·)

N (R) elementwise (although it may be
unbounded on these spaces). It is easy to see that there exists an m0 ∈ N such that

Ψn Vhmϕ = Vhmϕ for all m � m0. (5.25)

Then from (5.23) and (5.25) it follows that for all ϕ ∈ [C∞
c (R)]N and all m � m0,

‖Vhmϕ‖
L p(·)

N (R)
= ‖Ψn Vhmϕ‖

L p(·)
N (R)

� 4‖B‖B(L p(·)
N (R))

‖A jΨn Vhmϕ‖
L p(·)

N (R)

= 4‖B‖B(L p(·)
N (R))

‖A j Vhmϕ‖
L p(·)

N (R)

= 4‖B‖B(L p(·)
N (R))

∥∥Vhm (V−hm A j Vhmϕ)
∥∥

L p(·)
N (R)

. (5.26)

Analogously, from (5.24) and (5.25) we get for all ϕ ∈ [C∞
c (R)]N and all m � m0,

‖Vhmϕ‖
L p′(·)

N (R)
� 4

∥∥B ′∥∥
B(L p′(·)

N (R))

∥∥Vhm

(
V−hm A′

j Vhmϕ
)∥∥

L p′(·)
N (R)

. (5.27)

Since the sequence {p(hm)}∞m=1 is bounded, p− � p(hm) � p+ for all m ∈ N, there exists its convergent subsequence
{p(hmk )}∞k=1. Let

qr := lim
k→∞

p(hmk ).

It is clear that qr ∈ J . Taking into account (1.1) we also see that

lim
k→∞

p′(hmk ) = qr/(qr − 1) =: q′
r ∈ J ′.

Applying Lemma 4.2 to

wαβ := ((
a( j)

r
)
αβ

P + Q
)
ϕβ, (wαβ)mk := V−hmk

(
(a j)αβ P + Q

)
Vhmk

ϕβ

with α,β ∈ {1, . . . , N}, we obtain

lim
k→∞

∥∥Vhmk

(
V−hmk

(A j)αβ Vhmk
ϕβ

)∥∥
p(·) = lim

k→∞
∥∥Vhmk

(wαβ)mk

∥∥
p(·) = ‖wα,β‖qr = ∥∥(R j)αβϕβ

∥∥
qr

.

Then

lim
k→∞

∥∥Vhmk
(V−hmk

A j Vhmk
ϕ)

∥∥
L p(·)

N (R)
= ‖R jϕ‖Lqr

N (R). (5.28)

Analogously, applying Lemma 4.2 to

w ′
αβ := ((

a( j)
r

)
βα

P + Q
)
ϕβ, (wαβ)′mk

:= V−hmk

(
(a j)βα P + Q

)
Vhmk

ϕβ

with α,β ∈ {1, . . . , N} on the dual space, we get

lim
k→∞

∥∥Vhmk

(
V−hmk

A′
j Vhmk

ϕ
)∥∥

L p′(·)
N (R)

= ∥∥R ′
jϕ

∥∥
L

q′
r

N (R)
. (5.29)

Finally, applying Lemma 4.2 to the constant sequences wk = ϕβ and w = ϕβ for all β ∈ {1, . . . , N}, we get

lim
k→∞

‖Vhmk
ϕ‖

L p(·)
N (R)

= ‖ϕ‖Lqr
N (R), lim

k→∞
‖Vhmk

ϕ‖
L p′(·)

N (R)
= ‖ϕ‖

L
q′

r (R)
. (5.30)
N
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Inequalities (5.26) and (5.27), in particular, imply that for all k ∈ N and ϕ ∈ [C∞
c (R)]N ,

‖Vhmk
ϕ‖

L p(·)
N (R)

� 4‖B‖B(L p(·)
N (R))

∥∥Vhmk
(V−hmk

A j Vhmk
ϕ)

∥∥
L p(·)

N (R)
,

‖Vhmk
ϕ‖

L p′(·)
N (R)

� 4
∥∥B ′∥∥

B(L p′(·)
N (R))

∥∥Vhmk

(
V−hmk

A′
j Vhmk

ϕ
)∥∥

L p′(·)
N (R)

.

Passing in these inequalities to the limit as k → ∞ and taking into account equalities (5.28)–(5.30), we obtain for all
ϕ ∈ [C∞

c (R)]N ,

‖ϕ‖Lqr
N (R) � 4‖B‖B(L p(·)

N (R))
‖R jϕ‖Lqr

N (R), (5.31)

‖ϕ‖
L

q′
r

N (R)
� 4

∥∥B ′∥∥
B(L p′(·)

N (R))

∥∥R ′
jϕ

∥∥
L

q′
r

N (R)
. (5.32)

From inequalities (5.17) and (5.31) we obtain

‖ϕ‖Lqr
N (R) � 4‖B‖B(L p(·)

N (R))
‖Rϕ‖Lqr

N (R) + 4‖B‖B(L p(·)
N (R))

‖R − R j‖B(Lqr
N (R))‖ϕ‖Lqr

N (R)

� 4‖B‖B(L p(·)
N (R))

‖Rϕ‖Lqr
N (R) + 1

2
‖ϕ‖Lqr

N (R).

Hence, for all ϕ ∈ [C∞
c (R)]N ,

‖ϕ‖Lqr
N (R) � 8‖B‖B(L p(·)

N (R))
‖Rϕ‖Lqr

N (R). (5.33)

Let f ∈ Lqr
N (R) and {ϕk}∞k=1 ⊂ [C∞

c (R)]N be a sequence such that

lim
k→∞

‖ f − ϕk‖Lqr
N (R) = 0.

From this equality and (5.33) it follows that

‖ f ‖Lqr
N (R) = lim

k→∞
‖ϕk‖Lqr

N (R) � 8‖B‖B(L p(·)
N (R))

lim
k→∞

‖Rϕk‖Lqr
N (R) = 8‖B‖B(L p(·)

N (R))
‖R f ‖Lqr

N (R).

Therefore

0 <
1

8‖B‖B(L p(·)
N (R))

� J
(

R; Lqr
N (R)

)
. (5.34)

Arguing analogously and starting with (5.18) and (5.32), we obtain

0 <
1

8‖B ′‖B(L p′(·)
N (R))

� J
(

R ′; L
q′

r
N (R)

)
. (5.35)

From Corollary 3.12 and Lemma 3.13 we obtain

R∗ = (ar P + Q )∗ = Pa∗
r I + Q = A3 R ′ A4,

where A3 := I + Pa∗
r Q and A4 := I − Q a∗

r P are invertible on L
q′

r
N (R). From this equality, Lemma 3.5 and Theorem 3.6 it

follows that

J
(

R∗; L
q′

r
N (R)

)
� J

(
A3; L

q′
r

N (R)
) · J

(
R ′; L

q′
r

N (R)
) · J

(
A4; L

q′
r

N (R)
) = J (R ′; L

q′
r

N (R))

‖A−1
3 ‖

B(L
q′

r
N (R))

‖A−1
4 ‖

B(L
q′

r
N (R))

. (5.36)

From (3.4) we see that∥∥A−1
3

∥∥
B(L

q′
r

N (R))
= ∥∥I − Pa∗

r Q
∥∥

B(L
q′

r
N (R))

� 1 + ‖P‖
B(L

q′
r

N (R))

∥∥a∗
r I

∥∥
B(L

q′
r

N (R))
‖Q ‖

B(L
q′

r
N (R))

� 1 + CN‖ar‖L∞
N×N (R)M2 (5.37)

and analogously∥∥A−1
4

∥∥
q′

r
� 1 + CN‖ar‖L∞

N×N (R)M2. (5.38)

B(LN (R))
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Combining (5.35)–(5.38), we arrive at

J
(

R∗; L
q′

r
N (R)

)
�

J (R ′; L
q′

r
N (R))

(1 + CN‖ar‖L∞
N×N (R)M2)2

�
(8‖B ′‖B(L p′(·)

N (R))
)−1

(1 + CN‖ar‖L∞
N×N (R)M2)2

=: M1 > 0.

From this inequality and Lemma 3.4 we conclude that

Q
(

R; Lqr
N (R)

)
� M1 > 0. (5.39)

Finally, inequalities (5.34), (5.39) and Theorem 3.6 imply that the operator R = ar P + Q is invertible on the standard
Lebesgue space Lqr

N (R). Part (a) is proved. The proof of part (b) is analogous. �
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