JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:422 |
Existence of standing waves for the complex Ginzburg-Landau equation | |
Article | |
Cipolatti, Rolci1  Dickstein, Flavio1  Puel, Jean-Pierre2  | |
[1] Univ Fed Rio de Janeiro, Inst Matemat, BR-21944970 Rio De Janeiro, RJ, Brazil | |
[2] Univ Versailles St Quentin, CNRS, LMV, UMR 8100, F-78035 Versailles, France | |
关键词: Standing waves; Complex Ginzburg-Landau equation; | |
DOI : 10.1016/j.jmaa.2014.08.057 | |
来源: Elsevier | |
【 摘 要 】
We study the existence of standing wave solutions of the complex Ginzburg-Landau equation phi(t) - e(i0)(rho I - Delta)phi - e(i gamma)vertical bar phi vertical bar(alpha)phi = 0 in RN, where a > 0, (N - 2)alpha < 4, p > 0 and theta,gamma is an element of R. We show that for any is an element of (-pi/2, pi/2) there exists is an element of > 0 such that (GL) has a non-trivial standing wave solution if vertical bar gamma -theta vertical bar < is an element of. Analogous result is obtained in a ball Omega is an element of R-N for rho > -lambda(i), where lambda(1) is the first eigenvalue of the Laplace operator with Dirichlet boundary conditions. (C) 2014 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2014_08_057.pdf | 407KB | download |