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We study the existence of standing wave solutions of the complex Ginzburg–Landau 
equation

ϕt − eiθ(ρI − Δ)ϕ− eiγ |ϕ|αϕ = 0 (GL)

in RN , where α > 0, (N − 2)α < 4, ρ > 0 and θ, γ ∈ R. We show that for any 
θ ∈ (−π/2, π/2) there exists ε > 0 such that (GL) has a non-trivial standing wave 
solution if |γ − θ| < ε. Analogous result is obtained in a ball Ω ∈ RN for ρ > −λ1, 
where λ1 is the first eigenvalue of the Laplace operator with Dirichlet boundary 
conditions.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The complex Ginzburg–Landau equation

ψt = z1Δψ + z2|ψ|αψ + z3ψ, (1.1)

for α = 2, z1, z2, z3 ∈ C, with �z1 ≥ 0 was proposed independently by Diprima, Eckhaus, Segel [8] and 
Stewartson, Stuart [22] to model the interaction of plane waves in fluid flows and plays a central role in 
the study of the development of nonlinear instabilities in fluid dynamics. See [5,24] and the references cited 
therein for a discussion of various problems where the complex Ginzburg–Landau equation applies. Local 
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(global for �z2 < 0) well-posedness of (1.1) (for α > 0) was derived in both RN and a domain Ω ⊂ R
N , 

under various boundary conditions and assumptions on the parameters, see [9,10,16,20] and the references 
therein.

The existence of special solutions of (1.1) (holes, fronts, pulses, sources, sinks, etc.) is discussed in nu-
merous works, see e.g. [6,14,15,18,19,21,24]. We look for standing wave solutions. Replacing ϕ by eiηtϕ for 
some η ∈ R and rescaling the equation, we rewrite (1.1) as

∂tϕ + eiθ(ρϕ− Δϕ) = eiγ |ϕ|αϕ, (1.2)

where ρ ∈ R. Given ω ∈ R, a standing wave of the form ϕ = eiωtu(x) is a solution of (1.2) if and only if u
satisfies

iωu + eiθ(ρu− Δu) = eiγ |u|αu. (1.3)

Plane waves ϕ = ei(kx−ωt), where k, ω ∈ R are particular standing waves. It is easy to see that (1.2) admits 
plane wave solutions in RN for all values of ρ, θ, γ and α. Stationary solutions are also standing waves of 
special kind. In the case of the nonlinear heat equation θ = γ = 0 or θ = 0, γ = π then ω = 0, so that 
Eq. (1.3) reduces to the nonlinear elliptic equation ρu −Δu = ±|u|αu. The case of the nonlinear Schrödinger 
equation θ = ±γ = ±π

2 leads to the equation (ρ ± ω)u − Δu = ±|u|αu.
We obtain here solutions that are different from these particular ones. In fact, using well known results of 

the theory of nonlinear elliptic equations for the case ω = 0 and θ = γ, we show the existence of nontrivial 
standing wave solutions for θ ≈ γ by a perturbation argument, as we describe below.

Eq. (1.3) will be considered both in the whole space Ω = R
N or in a ball Ω ⊂ R

N with Dirichlet boundary 
condition, for N ≥ 1. We suppose θ, γ ∈ (−π/2, π/2) and α subcritical, i.e.

0 < α, (N − 2)α < 4, (1.4)

which includes the relevant case α = 2, for N ≤ 3. For θ = γ and ω = 0, (1.3) reduces to

ρu− Δu− |u|αu = 0. (1.5)

Consider first Ω = R
N , in which case we assume that ρ > 0. It was shown in [13] that (1.5) has a unique 

positive radially symmetric solution U ∈ C2(RN ) ∩ C0(RN ). (C0(RN ) is the space of continuous functions
which tend to zero at infinity.) In fact, U ∈ H2

rad(RN ), the subspace of radial functions of H2(RN ). Note 
that (1.5) is phase invariant, i.e., Ueiβ ∈ H2

rad(RN ) is also a solution for all β ∈ R. Here and in the rest of 
this paper we consider real spaces composed of complex-valued functions, and distinguish them from real 
spaces of real-valued functions by using bold face typing.

Theorem 1.1. Assume (1.4) holds and suppose ρ > 0. Let U ∈ H2
rad(RN ) be the unique positive radial solution 

of (1.5). Given θ ∈ (−π/2, π/2) and β ∈ R there exists 0 < ε < min{π/2 − θ, π/2 + θ} and a C1 mapping 
g : (θ−ε, θ+ε) → R ×H2

rad(RN ), g(γ) = (ωγ , uγ), satisfying ωθ = 0, uθ = Ueiβ and such that ϕγ = eiωγtuγ

is a solution of (1.2).

In the bounded domain case of the unitary ball Ω of RN , we suppose that

ρ > −λ1, (1.6)

where λ1 is the first eigenvalue associate to the Laplace–Dirichlet operator in Ω. As in the case of the whole 
space, (1.5) admits a unique positive solution U ∈ H2(Ω) ∩H1

0 (Ω), which is radial and radially decreasing. 
The following result is analogous to Theorem 1.1.
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Theorem 1.2. Assume (1.4), (1.6) hold and let U ∈ H2(Ω) ∩H1
0 (Ω) be the positive solution of (1.5). Given 

θ ∈ (−π/2, π/2) and β ∈ R there exists 0 < ε < min{π/2 −θ, π/2 +θ} and a C1 mapping g : (θ−ε, θ+ε) →
R × (H2(Ω) ∩ H1

0(Ω)), g(γ) = (ωγ , uγ), satisfying ωθ = 0, uθ = Ueiβ and such that ϕγ = eiωγtuγ is a 
solution of (1.2).

In the proofs of Theorem 1.1 and Theorem 1.2 we apply the Implicit Function Theorem to F (ω, u, γ) =
iωu + eiθ(ρu − Δu) − eiγ |u|αu = 0 in a neighborhood of ω = 0, u = Ueiβ and γ = θ. Analogous approach 
was considered in [3] to obtain standing wave solutions to (1.2) in a bounded domain for α small, where 
an eigenvector of the Laplace–Dirichlet operator is used as a starting point. Our point of view allows us 
to obtain solutions for α satisfying (1.4) and for the case of the whole space. We are lead to study the 
linearized operator Lβ = ∂uF (0, Ueiβ , θ) in an appropriate setting. In fact, it will be sufficient to consider 
L = ∂uF (0, U, θ), see Section 5.

We address some comments about the hypothesis in Theorem 1.1 and Theorem 1.2.

Remark 1.3.

(1) The assumption θ ∈ (−π/2, π/2) yields an accretive linear operator associated to the problem and 
corresponds to �z1 > 0 in (1.1). We also obtain γ ∈ (−π/2, π/2), i.e., standing waves appear in the 
focusing case. In the defocusing case γ ∈ (π/2, 3π/2), multiplying the equation by ϕ and integrating, 
we see that ‖ϕ(t)‖L2(RN ) decreases in time. Thus there cannot be any non-trivial standing wave in that 
case.

(2) In Theorems 1.1 and 1.2, we obtain solutions for γ close to θ. This important restriction seems to 
be technical and it is reasonable to conjecture that the branches of solutions we construct could be 
extended to the whole interval (−π/2, π/2).

(3) The restriction to radial solutions in Theorem 1.1 seems to be necessary in our proof. It ensures the com-
pactness of the linear operator K introduced in the proof. It also ensures that kerL is one-dimensional, 
which allows for the application of the Implicit Function Theorem. As discussed in Section 3, kerL is 
(N + 1)-dimensional in L2(RN ).

(4) The assumption that Ω is a ball in Theorem 1.2 ensures that kerL is one-dimensional. We don’t know 
if this is true in general. The standing waves in Theorem 1.2 can be constructed such that they are 
radially symmetric, see Remark 5.1.

This paper is organized as follows. In Section 2 we recall some well stablished properties of the positive 
solution U , both in the bounded and in the unbounded domain cases. A spectral analysis of the operator L
is developed in Section 4 for the case where Ω is a ball, and in Section 3 when Ω is the whole space. Finally, 
in Section 5 we prove Theorem 1.1 and Theorem 1.2.

2. The starting point θ = γ

In this section we recall some well known properties of solutions u ∈ H1
0 (Ω) of (1.5) which will be useful 

later, in the cases where Ω is a ball or the whole space

2.1. The case of a ball

Let Ω be a ball of RN and we assume (1.6). Then (1.5) admits infinitely many real solutions and, in 
particular, one positive radially symmetric solution U [1]. (Non-radial complex solutions were obtained 
in [17].) Eq. (1.5) is phase invariant: if u solves (1.5) so does eiβu for all β ∈ R.
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The positive solution U , which was shown to be unique in [13], can be obtained by ode methods [2]. It 
can also be derived by solving the minimization problem

min
u∈S

∫
Ω

ρ|u|2 + |∇u|2, (2.1)

where

S =
{
u ∈ H1

0 (Ω),
∫

|u|α+2 = 1
}
. (2.2)

Using that H1(Ω) is compactly injected in Lα+2(Ω) one easily sees that (2.1) has a (unique) positive 
solution Ũ . It is also clear that U = kŨ solves (1.5) for a judicious choice of k. It then follows from standard 
symmetrization arguments that U is radial and radially decreasing.

One may also obtain U as a mountain pass solution, see [1]. Consider

E(u) = ρ

2

∫
|u|2 + 1

2

∫
|∇u|2 − 1

α + 2

∫
|u|α+2 (2.3)

and

Γ =
{
γ ∈ C

(
[0, 1];H1

0 (Ω)
)
, γ(0) = 0, γ(1) = u1

}
, (2.4)

where E(u1) < 0. Then E(u) is well-defined for u ∈ H1
0 (Ω) and Γ is nonempty. In addition,

c = inf
γ∈Γ

sup
t∈[0,1]

E
(
γ(t)

)
(2.5)

is a critical value of E such that c = E(U) > 0 and E′(U) = 0. Moreover, it can be easily shown that U is 
a ground state solution, i.e., E(U) ≤ E(V ) for all solution V �= 0 of (1.5).

2.2. The case of the whole space

The general picture essentially remains unchanged for real solutions u of (1.5) in all RN provided ρ > 0. 
It is easy to see that the minimum in (2.1) is reached when Ω = R

N . Indeed, note that, due to Schwarz 
symmetrization, one may assume that there exists a minimizing sequence {uj}j∈N such that uj is nonnega-
tive, radial and radially decreasing. Let Br be the ball of radius r of RN centered at zero and let VNrN be 
its volume. We have

VNrNu2
j (r) ≤

∫
BR

|uj |2 ≤ ‖uj‖L2(RN )

for all r > 0. This shows that uj(r) decays as rN/2 as r → ∞ uniformly in j. Using that H1(BR) is 
compactly injected in Lα+2, a standard argument allow us to obtain a (nonnegative) solution u of (2.1). 
Then u satisfies ρu −Δu = λuα+2 for some λ > 0 so that U = λ1/αu solves (1.5) in RN . It is straightforward 
to see that U is a ground state, that is, U has the smallest energy E among the nontrivial solutions of (1.5).

For N ≥ 2, we have the following.

Proposition 2.1. Let N ≥ 2 and denote H1
rad(RN ) the space of radially symmetric functions of H1(RN ). Let 

Γ be defined by (2.4) where H1
0 (Ω) is replaced by H1

rad(RN ). Then c given by (2.5) is a critical value of E
and there exists a solution U > 0 of (1.5) such that E(U) = c.



R. Cipolatti et al. / J. Math. Anal. Appl. 422 (2015) 579–593 583
Proof. The fact that c > 0 and that the Palais–Smale condition for E at the c level is a consequence of 
the fact that H1

rad(RN ) is compactly injected in Lα+2(RN ) [23]. Moreover, we may take u1 as sϕ, where 
ϕ �= 0 and s is large enough. Applying Theorem 2.1 of [1] we obtain that c is a critical value of E. To 
see that the corresponding critical point U is positive, let us observe that c = max{E(tU), t ≥ 0} =
max{E(t|U |), t ≥ 0}. Furthermore, E(tu1) < 0 for t ≥ 1 and we can choose s large enough so that 
E(s(tu1 + (1 − t)|U |)) < 0 for all t ∈ [0, 1]. Therefore, the polygonal path γ joining u1, su1, s|U | and 0
belongs to Γ and E(|U |) = max{E(u), u ∈ Γ} if s is sufficiently large. This shows that |U | is a critical 
point of E and thus |U | solves (1.5). From the maximum principle, we obtain that U > 0. �
Remark 2.2.

(1) For N = 1 the above proof does not work as H1
rad(R) is no longer compactly injected in Lα+2(R).

(2) For N ≥ 2, it is easy to see that the solution U obtained in Proposition 2.1 is a ground state. For a 
connection between solutions obtained from constrained minimization and mountain-pass solutions in 
a more general framework, see [12].

(3) It is likely that Proposition 2.1 and the above remark are also valid for N = 1 but this would require, 
in the proof of the mountain pass theorem, a version of the deformation lemma for radial decreasing 
functions.

(4) In [13] it is also shown the uniqueness of positive radially symmetric solutions and in [23] it is proven 
that it decays exponentially. (For an alternative variational characterization of U involving the so-called 
Gagliardo–Nirenberg quotient, see [25, Proposition 2.6].)

For Ω either the unitary ball or the whole space, we consider the linearized operator

Lv = ρv − Δv − Uαv − αUα�v, (2.6)

where U is the positive solution of (1.5). More precisely, we set D(L) = H2(Ω) ∩ H1
0(Ω) and define L :

D(L) ⊂ L2(Ω) → L2(Ω) by (2.6). Then Lv = L+�v + iL−�v where

L+v = ρv − Δv − (α + 1)|U |αv, (2.7)

L−v = ρv − Δv − |U |αv. (2.8)

We study below the operators L+ and L−.

3. The linearized operator: the case Ω = RRR
N

In the case Ω = R
N , under a suitable rescaling we may assume that ρ = 1 in (2.6). We want to show that 

L+ is an injective operator when restricted to the space V
def= L2

rad(RN ) of radially symmetric and square 
integrable functions. We define D(L+) = H2(RN ) ∩ V and consider L+ : D(L+) ⊂ V → V given by (2.7).

Set σ = Uα and denote Vσ the space L2(RN , σdx), where dx is the usual Lebesgue measure. We also 
introduce K : Vσ → Vσ such that for v ∈ Vσ

Kv = (α + 1)(I − Δ)−1Uαv. (3.1)

We have that K is a positive, symmetric operator. Using that U decays to zero at infinity, a standard 
argument shows that K is compact. Denote {ϕj}j∈N the orthonormal basis of eigenvectors of K and {μj}j∈N

the corresponding set of eigenvalues. Then μj > 0 and Kϕj = μjϕj is equivalent to
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ϕj − Δϕj = α + 1
μj

Uαϕj . (3.2)

Note that, up to a normalization, ϕ1 = U and μ1 = α + 1. Setting

c =
∫

|U |2 + |∇U |2 =
∫

Uα+2, (3.3)

we will now prove that μ2 ≤ 1. This is a consequence of the fact that U satisfies
∫

|U |2 + |∇U |2 ≤
∫

|u|2 + |∇u|2,

for all u ∈ Sc, where

Sc =
{
u ∈ H1

0 (Ω),
∫

|u|α+2 = c

}
. (3.4)

Lemma 3.1. μ2 ≤ 1.

Proof. Let ϕ2 be an eigenvector of K associated to μ2, so that
∫

Uα+1ϕ2 =
∫

σϕ1ϕ2 = 0. (3.5)

Consider G : R2 → R such that

G(s, t) =
∫ ∣∣(1 + s)U + tϕ2

∣∣α+2
.

Then G is C2 and

∂sG(s, t) = (α + 2)
∫ ∣∣(1 + s)U + tϕ2

∣∣α((1 + s)U + tϕ2
)
U,

∂tG(s, t) = (α + 2)
∫ ∣∣(1 + s)U + tϕ2

∣∣α((1 + s)U + tϕ2
)
ϕ2,

so that G(0, 0) = c, ∂sG(0, 0) = (α + 2) 
∫
Uα+2, ∂tG(0, 0) = (α + 2) 

∫
Uα+1ϕ2 = 0, see (3.3), (3.5). Using 

the Implicit Function Theorem, we see that there exists ε > 0 and a C1 function t → s(t) defined for |t| < ε

such that s(0) = 0 and G((1 + s(t))U + tϕ2) = c. Moreover, s′(0) = −(∂sG(0, 0))−1∂tG(0, 0) = 0.
Set w(t) = s(t)U + tϕ2. From (3.3) and the Taylor–Lagrange formula we get

c =
∫

|U + w|α+2 =
∫

Uα+2 + (α + 2)
∫

Uα+1w

+ (α + 2)(α + 1)w2
1∫

0

∫
|U + σw|α(1 − σ) dσ

= c + (α + 2)
∫

Uα+1w + (α + 2)(α + 1)
2 w2Uα

+ (α + 2)(α + 1)w2
1∫ ∫ (

|U + σw|α − Uα
)
(1 − σ) dσ.
0
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Using that s = O(t2) and (3.5) it follows that

2sc + (α + 1)t2
∫

Uαϕ2
2 = o

(
t2
)
. (3.6)

Note that s < 0 for t small. Furthermore, using again that s = O(t2), from (3.3), (3.2), (3.5) we get
∫

|U + w|2 +
∣∣∇(U + w)

∣∣2 =
∫

|U |2 + |∇U |2 + 2
∫

U(I − Δ)w +
∫

w(I − Δ)w

= c + 2sc + t2
∫

ϕ2(I − Δ)ϕ2 + o
(
t2
)

= c + 2sc + t2
α + 1
μ2

∫
Uαϕ2

2 + o
(
t2
)
. (3.7)

Using the minimization characterization of U and the fact that Schwarz symmetrization decreases the H1

norm. It follows then from (3.6) that

c ≤
∫

|U + w|2 +
∣∣∇(U + w)

∣∣2 = c + 2sc
(
1 − μ−1

2
)

+ o(s).

This shows that μ2 ≤ 1. �
We observe that the bound μ2 ≤ 1 is also a consequence of the fact that U is a mountain-pass solution 

(for N ≥ 2). We present a simple proof below, which uses the specific form of the function E(u). For the 
proof that general critical points of mountain-pass type have Morse index equal to one, see [11].

Alternative proof of Lemma 3.1 for N ≥ 2. We first remark that for k > 1 large enough γ0(t) = ktU ∈ Γ , 
see (2.4). In addition, maxu∈γ0 E(u) = E(U).

We argue by contradiction and suppose that μ2 > 1. We get from (3.2) that

〈L+ϕ2, ϕ2〉 = (α + 1)
(
μ−1

2 − 1
) ∫

Uαϕ2
2 < 0. (3.8)

Consider now the plane P containing U and span{ϕ2}. Given δ > 0, let

γ1 =
{
U − δ(cos tU + sin tϕ2), t ∈ [0, π]

}
(3.9)

be an arc of circle in P joining (1 − δ)U and (1 + δ)U . For u ∈ γ1, we have that

E(u) = E(U) + E′(U)(u− U) + 1
2
〈
L+(u− U), u− U

〉
+ o

(
δ2). (3.10)

Moreover, using that 〈L+U, ϕ2〉 = −α〈U, ϕ2〉σ = 0 we get

〈
L+(u− U), u− U

〉
= δ2(cos2 t〈L+U,U〉 + sin2 t〈L+ϕ2, ϕ2〉

)
< 0. (3.11)

Using this, (3.10) and that E′(U) = 0, we see that we can choose δ small enough so that E(u) < E(U) for 
all u ∈ γ1.

Let now γ be the curve obtained by replacing the path of γ0 going from (1 − δ)U to (1 + δ)U by γ1. Then 
γ ∈ Γ and maxu∈γ E(u) < E(U), leading to a contradiction. This shows that μ2 ≤ 1. �
Lemma 3.2. Suppose L+ϕ = 0, ϕ �= 0. Then there exists a unique r∗ > 0 such that ϕ(r∗) = 0.
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Proof. Let BR be the ball of radius R of RN . For v ∈ L2
rad(BR) let u ∈ H2

rad(BR) ∩ H1
0 (BR) satisfy 

(I −Δ)u = (α+ 1)Uαv. We define KR : L2
rad(BR) → L2

rad(BR) such that KRv = u. Then KR is a compact 
operator, which is symmetric and positive for the scalar product

〈u, v〉σ,R =
∫
BR

Uαuv. (3.12)

Denote {ϕR
j }j∈N an orthonormal basis of eigenvectors of KR, associated to the set {μR

j }j∈N of eigenvalues, 
so that

(I − Δ)ϕR
j = α + 1

μR
j

UαϕR
j (3.13)

and ∫
BR

UαϕR
i ϕ

R
j = δij . (3.14)

We recall the Courant minimax characterization

μR
j = inf

u∈V R
j

‖u‖H1
0(BR)=1

(α + 1)
∫
BR

Uαu2 = sup
V ∈SR

j

inf
u∈V

‖u‖H1
0(BR)=1

(α + 1)
∫
BR

Uαu2,

where V R
j = span{ϕ1, ϕ2, . . . , ϕj} and SR

j is the set of all subspaces of H1
0 (BR) of dimension j. It follows 

that for j ≥ 2

μR
j < μR

1 < μ1, (3.15)

where μ1 is the first eigenvalues of K given by (3.1). Moreover, given R′ < R denote Ṽ R
j the subspace of 

H1
0 (BR) obtained by extending to BR the functions of V R′

j as zero outside BR′ . Then Ṽ R
j ∈ SR

j and

μR′

j = inf
u∈V R′

j

‖u‖H1
0(B

R′ )=1

(α + 1)
∫

BR′

Uαu2 = inf
u∈Ṽ R

j

‖u‖H1
0(BR)=1

(α + 1)
∫
BR

Uαu2 ≤ μR
j .

In this way, there exists μ∞
j such that

μR
j ↗ μ∞

j ≤ μ1 (3.16)

as R → ∞. We extend ϕR
j (r) = 0 for r > R. Using (3.13) and (3.14) we see that

∫ ∣∣ϕR
j

∣∣2 +
∣∣∇ϕR

j

∣∣2 = α + 1
μR
j

∫
BR

Uα
∣∣ϕR

j

∣∣2 = α + 1
μR
j

. (3.17)

It follows then from (3.16) that {ϕR
j }R≥R is uniformly bounded in H1(RN ) for all R > 0. Upon considering 

a subsequence, we may write that there exists ϕ∞ in H1(RN ) such that ϕR
j ⇀ ϕ∞

j weakly in H1(RN ) as 
R → ∞. Using that U(r) −→

r→∞
0, we readily obtain from (3.13) and (3.14) that

(I − Δ)ϕ∞
j = α + 1

μ∞ Uαϕ∞
j

j
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with ∫
RN

Uαϕ∞
i ϕ∞

j = δij .

Thus, μ∞
j is an eigenvalue of K, associated to ϕ∞

j . Note that ϕ∞
1 > 0 so that μ∞

1 = μ1. It follows that

μ∞
j = μj (3.18)

for some j ≥ 2. Suppose now that L+ϕ = 0 so that Kϕ = ϕ. Thus ϕ is an eigenvector of K having 1 as 
eigenvalue. As μ1 = α + 1 and because of Lemma 3.1, we must have μ2 = 1. In particular, ϕ is not a first 
eigenvector and it must change sign. We will show that it changes sign only once. We argue by contradiction 
and assume that ρ and R are the two first zeroes of ϕ such that 0 < ρ < R. Then

KRϕ = ϕ and 1 = μR
j (3.19)

for some j. As ϕ changes sign on (0, R), we have j ≥ 2, so that μR
2 ≥ 1. Let us show that μR

2 strictly grows 
with R. Assume that μR′

2 = μR
2 for some R′ < R. Then μρ

2 = μR
2 for all R′ < ρ < R. Now using (3.13) for 

ϕρ
2 and ϕR

2 in Bρ and as we deal with radial functions it is easy to see that

ϕR
2 (ρ)∂rϕρ

2(ρ) = 0,

so that ϕR
2 (ρ) = 0 for all ρ ∈ [R′, R]. This implies ϕR

2 = 0 which gives a contradiction. Therefore μ∞
2 >

μR
2 ≥ 1. From (3.18) we get that 1 < μ∞

2 ≤ μ2. But this contradicts Lemma 3.1, showing that ϕ(r) has a 
single zero r∗ > 0. �

We next present the ingenious argument of [4] to show that L+ is injective.

Lemma 3.3. L+ is injective.

Proof. We argue by contradiction and assume that there exists ϕ �= 0 such that L+ϕ = 0. Using Lemma 3.2, 
we may assume that there exists r∗ > 0 such that ϕ(r) > 0 for r < r∗ and ϕ(r) < 0 for r > r∗. Set now

η(x) = U(x) + α

2 x · ∇U(x).

Since U decays exponentially, η ∈ H1
rad(RN ). Moreover, a straightforward calculation yields

L+η = −αU.

Define w = Uα(r∗)η − U and z = L+w. Then z(r) = αU(r)(Uα(r) − Uα(r∗)) so that z(r) > 0 for r < r∗

and z(r) < 0 for r > r∗. Hence, z(r)ϕ(r) > 0 for r �= r∗. However, this is in contradiction with the fact that

〈ϕ, z〉 = 〈ϕ,L+w〉 = 〈L+ϕ,w〉 = 0.

This shows that L+ is injective. �
Using decomposition in spherical harmonics, in [25] and in [4] it is proved that the complete kernel of 

L+ in L2(RN ) is kerL+ = [∂1U, ∂2U, . . . , ∂NU ]. Note that ∂jU is not a radial function.
We may now characterize the kernel of L given by (2.6).
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Proposition 3.4. We have kerL = [iU ].

Proof. If v ∈ kerL then �v ∈ kerL+ and �v ∈ kerL−. It follows from Lemma 3.3 that �v = 0. Moreover, 
if ϕ ∈ kerL− then ϕ is an eigenvalue of K given by (3.1), associated to μ = α + 1. But α + 1 is the first 
eigenvalue of K and KU = (α + 1)U . Hence kerL− = [U ] so that kerL = [iU ]. �
4. The linearized operator: the case of a ball

Let Ω ⊂ R
N be the unitary ball and suppose (1.6) holds. Let U be the unique positive solution of (1.5)

and let L be given by (2.6). Then v ∈ kerL if and only if �v ∈ kerL+ and �v ∈ kerL−. Since L−U = 0 and 
U > 0, it follows that kerL− = [U ] is a one-dimensional subspace. We will now show that L+ is injective. 
This is proved in [7] for ρ = 0. For the reader’s convenience, we reproduce the arguments here. The two 
preliminary results, Lemma 4.1 and Lemma 4.2 hold in fact for ρ > −λ1 and will be useful in the proof of 
the general case.

For x ∈ R
N write x = (t, y), where t ∈ R, y ∈ R

N−1, if N > 1 or x = t if N = 1. Set Ω∗ = {x ∈ Ω, t < 0}, 
D(L∗

+) = H2(Ω∗) ∩H1
0 (Ω∗) and L∗

+ : D(L∗
+) ⊂ L2(Ω∗) → L2(Ω∗) be given by (2.7).

Lemma 4.1. We have λ∗
1 = λ1(L∗

+) > 0.

Proof. Let v = ∂tU . It is well known that v > 0 over Ω∗ with v > 0 over Γ ∗ = {x ∈ Ω∗, |x| = 1}. Moreover, 
taking the derivative with respect to t in (1.5) we see that L∗

+v = 0. Consider u1 a positive eigenvector 
of L∗

+, so that L∗
+u1 = λ∗

1u1. Then

λ∗
1

∫
Ω∗

u1v =
∫
Ω∗

vL∗
+u1 = −

∫
∂Ω∗

v∂ηu1 > 0. (4.1)

This shows that λ∗
1 > 0. �

As a consequence, we have the following.

Lemma 4.2. Let v satisfy L+v = 0. Then v is radially symmetric.

Proof. If v ∈ kerL+ then v ◦ R ∈ kerL+ for all unitary transformation R. It thus suffices to show that 
v(t, y) is symmetric with respect to t. Define ψ(x) = v(t, y) −v(−t, y). Then L∗

+ψ = 0, with ψ = 0 over ∂Ω∗. 
It follows from Lemma 4.1 that ψ = 0. This ends the proof. �
Lemma 4.3. Suppose ρ = 0. Then the operator L+ given by (2.8) is injective.

Proof. Let v ∈ H2(Ω) ∩H1
0 (Ω) satisfy L+v = 0. Then

0 =
∫
Ω

L+vU =
∫
Ω

L+Uv = −α

∫
Ω

Uα+1v. (4.2)

Consider now the Pohozaev function ψ = x · ∇U . We have that ∂jψ = ∂jU + x · ∇∂jU , so that ∂2
jjψ =

2∂2
jjU+x ·∇∂2

jjU . Thus, Δψ = 2ΔU+x ·Δ∇U . In addition, we get from (1.5) that Δ∇U+(α+1)Uα∇U = 0, 
and so

Δψ = 2ΔU − (α + 1)Uαx · ∇U = −2Uα+1 − (α + 1)Uαψ. (4.3)
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It follows from (4.3) and (4.2) that

0 = 2
∫
Ω

Uα+1v =
∫
Ω

L+ψv =
∫
∂Ω

ψ∂ηv =
∫
∂Ω

∂ηU∂ηv. (4.4)

We conclude from Lemma 4.2 and Hopf’s strong maximum principle that v′(1) = 0. Therefore, v = 0. �
Remark 4.4. Following [7], Lemma 4.3 holds in the case N = 2 and Ω any regular bounded star shaped 
domain.

The proof that L+ injective in the case ρ �= 0 follows the arguments of [4], see Lemma 3.3.

Lemma 4.5. Assume ρ > −λ1, ρ �= 0. Then L+ is injective.

Proof. Let

η(r) = 2U(r) + αrU ′(r). (4.5)

A straightforward calculation gives that

L+η = −2ραU. (4.6)

We want to show that kerL+ = {0}. We argue by contradiction and assume that there exists ϕ2 �= 0 such 
that L+ϕ2 = 0. Since U is a mountain-pass solution of (1.5), we know that λ2(L+) ≥ 0, see [11]. Since 
λ1(L+) < 0, we see that ϕ2 is an eigenvector associated to the second eigenvalue λ2 = 0. By Lemma 4.2, 
ϕ2 is radial. Using standard comparison arguments, it is easy to see that ϕ2 has a single zero r0 in (0, 1). 
For b ∈ (0, 1), define

g(r) =
{

1 0 ≤ r < b,

21−r
1−b − (1−r)2

(1−b)2 b ≤ r ≤ 1. (4.7)

Then g′′(r) = g′(r) = 0 if r < b. For r > b,

g′(r) = 2(b− r)
(1 − b)2 , (4.8)

g′′(r) = − 2
(1 − b)2 . (4.9)

We remark that we can choose b close enough to 1 so that

b > r0 (4.10)

and

Uα(r) < Uα(r0)g(r) (4.11)

for r > b. Set now w(r) = g(r)η(r), see (4.5). It follows from (4.6) that

L+w = gL+η − 2∇g · ∇η − ηΔg = −2gραU − 2∇g · ∇η − ηΔg. (4.12)

Thus L+w = −2ραU if |x| < b.



590 R. Cipolatti et al. / J. Math. Anal. Appl. 422 (2015) 579–593
For |x| > b, we get from (4.5), (4.8) and (4.9) that

∇g(r) · ∇η(r) = g′(r)η′(r) = 2(b− r)
(1 − b)2

(
(2 + α)U ′(r) + αrU ′′(r)

)
(4.13)

and that

Δg = g′′ + N − 1
r

g′ = − 2
(1 − b)2 − 2(N − 1)(r − b)

r(1 − b)2 . (4.14)

Defining h = −2∇g · ∇η − ηΔg we get from (4.5), (4.13) and (4.14) that there exists K > 0 such that

(1 − b)2h(r) ≤ 4U(r) + 2αrU ′(r) + K(r − b).

Since U(1) = 0 and U ′(1) < 0, 1 − b can be taken eventually smaller so that

h(r) < 0 for r > b. (4.15)

Set now t = Uα(r0)/(2ρ) and z = L+(−U + tw). Hence, by (4.12) we get

z = αUα+1 + t(−2gραU + h). (4.16)

Let us show that z and ϕ2 have the same sign. For r < b we use that g = 1 and h = 0 to get

z(r) = αU(r)
(
Uα(r) − Uα(r0)

)
.

It follows that z(r) > 0 if r < r0 and z(r) < 0 for r ∈ (r0, b). In addition, using (4.15) and (4.11), we get for 
r > b that

z(r) < αU(r)
(
Uα(r) − gUα(r0)

)
< 0.

We see then that z(r)ϕ2(r) > 0 for r �= r0. But

〈ϕ2, z〉 =
〈
ϕ2, L+(−U + βw)

〉
= 〈L+ϕ2,−U + βw〉 = 0,

giving a contradiction. This shows that L+ is injective. �
We present now the main result of this section.

Proposition 4.6. We have kerL = [iU ].

Proof. Let v ∈ kerL. Then �v ∈ kerL+ and �v ∈ kerL−. It follows from Lemma 4.3 and Lemma 4.5 that 
�v = 0. Moreover, as discussed in the beginning of this section kerL− = [U ]. This closes the proof. �
5. Proofs of Theorem 1.1 and Theorem 1.2

In this section we denote Lp(Ω) the real Banach space whose elements are complex-valued functions. In 
particular, L2(Ω) is a Hilbert space for the scalar product

(u, v) = �
∫
Ω

uv. (5.1)

Accordingly, Hm(Ω) denotes a real Hilbert space having complex elements.
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Proof of Theorem 1.1. For a fixed θ ∈ (−π/2, π/2) set X = R × H2
rad(RN ) and F : (−π/2, π/2) × X →

L2
rad(RN ) such that

F (γ, ω, u) = ρu− Δu− ei(γ−θ)|u|αu− iωe−iθu. (5.2)

Note that F is well defined due to Sobolev embedding H2(RN ) ↪→ L2α+2(RN ).
Then ϕγ = eiωγtuγ is a solution of (1.2) if and only if F (γ, ωγ , uγ) = 0. Note that F (θ, 0, Ueiβ) =

F (θ, g(θ)) = 0. In addition, it is immediate to see that F is a C1 function such that

∂F

∂ω
(γ, ω, u)μ = −ie−iθuμ,

∂F

∂u
(γ, ω, u)v = ρv − Δv − ei(γ−θ)[|u|αv + α|u|α−2u�(uv)

]
− iωe−iθv.

By the surjective form of the Implicit Function Theorem [26, Theorem 4.H, p. 177], the proof will be 
completed once we show that ∂ω,uF (θ, 0, Ueiβ) : X → L2

rad(RN ) is surjective. Note that

∂F

∂ω

(
θ, 0, Ueiβ

)
= −ie−iθUeiβ , (5.3)

∂F

∂u

(
θ, 0, Ueiβ

)
v = ρv − Δv − Uαv − αUαeiβ�

(
e−iβv

)
, (5.4)

so that

∂ω,uF
(
θ, 0, Ueiβ

)
(μ, v) = eiβ∂ω,uF (θ, 0, U)

(
μ, e−iβv

)
.

It thus suffices to consider the case β = 0.
Given f ∈ L2

rad(RN ), ∂ω,uF (θ, 0, U)(μ, v) = f is equivalent to

−ie−iθUμ + Lv = f, (5.5)

where L is given by (2.6). Note that L is a self-adjoint operator in L2
rad(RN ) for the scalar product (5.1). 

Using that kerL = [iU ], see Proposition 3.4, we choose μ such that

f̃ = f + ie−iθUμ ∈ (iU)⊥,

i.e.,

μ = − 1
cos θ‖U‖2

L2(RN )

∫
RN

�fU. (5.6)

The fact that Lv = f̃ has a solution for f̃ ∈ (iU)⊥ follows from the Fredholm Alternative applied to 
the compact operator K = (ρ − Δ)−1Uα, see Section 3. This shows that L is surjective and closes the 
proof. �
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Proof of Theorem 1.2. Set X = R × (H2(Ω) ∩ H1
0(Ω)) and define F : (−π/2, π/2) ×X → L2(Ω) by (5.2). 

The arguments of the proof of Theorem 1.1 are still valid in this case where Ω is a ball. The fact that 
kerL = [iU ] was stablished in Proposition 4.6. �
Remark 5.1.

(1) Let Ω be the unitary ball of RN and let X̃ = R ×H2(Ω) ∩H1
0(Ω) ∩(iU)⊥. Given f̃ ∈ (iU)⊥, there exists 

a unique z̃ ∈ (iU)⊥ such that Lz̃ = f̃ . We may thus modify the proof of Theorem 1.2 and apply the 
standard Implicit Function Theorem to find a unique curve of gγ = (ωγ , uγ) in X̃ such that ϕγ = eiωγuγ

is a standing wave solution of (1.2). Since the equation is invariant under unitary transformations and 
U is radially symmetric, it follows by the uniqueness of gγ that ϕγ is radially symmetric.

(2) Theorem 1.2 is still valid in the case N = 2, Ω any bounded regular star shaped domain and ρ = 0. 
Using Remark 4.4 the arguments of the proof apply without any change.
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