期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:438 |
Accurate approximations for the complete elliptic integral of the second kind | |
Article | |
Yang, Zhen-Hang1  Chu, Yu-Ming1  Zhang, Wen2  | |
[1] Hunan City Univ, Sch Math & Computat Sci, Yiyang 413000, Peoples R China | |
[2] Yeshiva Univ, Albert Einstein Coll Med, New York, NY 10033 USA | |
关键词: Gaussian hypergeometric function; Complete elliptic integral; Stolarsky mean; | |
DOI : 10.1016/j.jmaa.2016.02.035 | |
来源: Elsevier | |
【 摘 要 】
In this paper, we prove that the double inequality lambda S-11/4,S-7/4(1,r') < epsilon(r) < mu S-11/4,S-7/4(1,r') holds for all r is an element of (0,1) if and only if lambda <= mu/2 = 1.570796... and mu >= 11/7 = 1.571428..., where r' = (1 - r(2))(1/2), epsilon(r) = integral(pi/2)(0) root 1-r(2)sin(2)(t)dt is the complete elliptic integral of the second kind, and S-p,S-q (a,b) = [q(a(p) - b(p))/(p(aq - bq))](1/(p-q)) is the Stolarsky mean of a and b. (C) 2016 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2016_02_035.pdf | 330KB | download |