期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:322
Existence and asymptotic behavior of ground states for quasilinear singular equations involving Hardy-Sobolev exponents
Article
Alves, C. O. ; Goncalves, J. V. ; Santos, C. A.
关键词: quasilinear singular equations;    ground states;    variational methods;    lower-upper solutions;   
DOI  :  10.1016/j.jmaa.2005.09.024
来源: Elsevier
PDF
【 摘 要 】

We study the existence and decaying rate of solutions for the quasilinear problem { -Delta(p)u = rho(x)f(u) + (lambda)/(vertical bar x vertical bar theta) g(u) in R-N, u > 0 in R-N, u(x) (vertical bar x vertical bar ->infinity) -> 0, where Delta(p) stands for the p-Laplacian operator, 1 < p < N, rho: R-N -> [0, infinity) is continuous and not identically zero, lambda >= 0 is a parameter, vertical bar x vertical bar is the Euclidean norm of x, 0 <= theta <= p, f, g : [0, infinity) -> [0, infinity) are continuous and nondecreasing, f has sublinear growth and the Hardy-Sobolev exponent p(theta)* := p (N - theta)/(N - p) bounds the growth of g. We deal with variational methods and the lower and upper solutions technique. (c) 2005 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2005_09_024.pdf 182KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次