期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:452 |
Existence and multiplicity of solutions for a class of generalized quasilinear Schrodinger equations | |
Article | |
Shi, Hongxia1  Chen, Haibo1  | |
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China | |
关键词: Quasilinear Schrodinger equations; Standing wave solutions; Variational methods; | |
DOI : 10.1016/j.jmaa.2017.03.020 | |
来源: Elsevier | |
【 摘 要 】
This paper focuses on the following generalized quasilinear Schrodinger equations -div(g(2)(u)del u) + g(u)g'(u)vertical bar del u vertical bar(2) +V(x)u = f (x, u), x is an element of R-N, where N >= 3, g(s) : R -> R+ is a nondecreasing function with respect to vertical bar s vertical bar. By using a change of variables and variational methods, we obtain the existence and multiplicity of nontrivial solutions for the above problem when the nonlinearity is superlinear but does not satisfy the Ambrosetti-Rabinowitz type condition. (C) 2017 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2017_03_020.pdf | 361KB | download |