期刊论文详细信息
| JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:499 |
| Mapping properties of fundamental harmonic analysis operators in the exotic Bessel framework | |
| Article | |
| Langowski, Bartosz1,2  Nowak, Adam3  | |
| [1] Indiana Univ, Dept Math, 831 East 3rd St, Bloomington, IN 47405 USA | |
| [2] Wroclaw Univ Sci & Technol, Fac Pure & Appl Math, Wyb Wyspianskiego 27, PL-50370 Wroclaw, Poland | |
| [3] Polish Acad Sci, Inst Math, Sniadeckich 8, PL-00656 Warsaw, Poland | |
| 关键词: Bessel operator; Continuous Fourier-Bessel expansions; Hankel transform; Heat semigroup maximal operator; Riesz transform; Square function; | |
| DOI : 10.1016/j.jmaa.2021.125061 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
We prove sharp power-weighted L-p, weak type and restricted weak type inequalities for the heat semigroup maximal operator and Riesz transforms associated with the Bessel operator B-v in the exotic range of the parameter -infinity < v < 1. Moreover, in the same framework, we characterize basic mapping properties for other fundamental harmonic analysis operators, including the heat semigroup based vertical g-function and fractional integrals (Riesz potential operators). (C) 2021 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jmaa_2021_125061.pdf | 757KB |
PDF