期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:489
The two-weight inequality for the Poisson operator in the Bessel setting
Article
Li, Ji1  Wick, Brett D.2 
[1] Macquarie Univ, Dept Math, Sydney, NSW 2109, Australia
[2] Washington Univ, Dept Math, One Brookings Dr, St Louis, MO 63130 USA
关键词: Bessel operator;    Two weight inequality;    Poisson kernel;   
DOI  :  10.1016/j.jmaa.2020.124178
来源: Elsevier
PDF
【 摘 要 】

Fix lambda > 0. Consider the Bessel operator Delta(lambda) := -d(2)/dx(2) - 2 lambda/x d/dx on R+ := (0, infinity) and the harmonic conjugacy introduced by Muckenhoupt and Stein. We provide the two-weight inequality for the Poisson operator P-t([lambda]) = e(-t root Delta lambda) in this Bessel setting. In particular, we prove that for a measure mu on R-+,+(2) := (0, infinity) x (0, infinity) and sigma on R+: parallel to P-sigma([lambda])(f)parallel to(L2(R+,+2;mu)) less than or similar to parallel to f parallel to(L2(R+;sigma)), if and only if testing conditions hold for the Poisson operator and its adjoint. Further, the norm of the operator is shown to be equivalent to the best constant in the testing conditions. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2020_124178.pdf 360KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:0次