JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:403 |
Atomic decomposition of vector Hardy spaces | |
Article | |
Perez-Esteva, Salvador1  Ocarnpo-Salgado, Hugo1  | |
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Unidad Cuernavaca, Cuernavaca 62251, Mexico | |
关键词: Vector Hardy spaces; Atomic decompositions; | |
DOI : 10.1016/j.jmaa.2013.02.017 | |
来源: Elsevier | |
【 摘 要 】
We study Banach-valued Hardy spaces h(X)(p)(R-+(n+1)) of harmonic functions in the upper half space of Rn+1 defined in terms of maximal functions and the corresponding space of distributional boundary limits H-X(p)(R-n), where X is an arbitrary real or complex Banach space. For p > 1 the elements of h(X)(p)(R-+(n+1)) are the Poisson transform of Borel measures with p-bounded variation and values in X. For p <= 1 we prove the existence of atomic decomposition of elements in H-X(p)(R-n) where the atoms are vector measures with certain size and cancellation properties that generalize the atoms in the real valued Hardy spaces. (C) 2013 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2013_02_017.pdf | 452KB | download |