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1. Introduction and preliminaries

Much work has been done in the study of Hardy spaces of holomorphic and harmonic functions in the disk and with
values in a Banach space. Questions like the existence of boundary values, equivalences of the various definitions of Hardy
spaces valid in the scalar case and atomic decompositions among others are linked to the properties of the Banach space
like the Radon-Nikodym properties or UMD (see for example [1-3,5,10]).

The purpose of this work is to study Hardy spaces that we will denote by h’;g (R'}r“), consisting of harmonic functions in

the upper half space R'fl = {(x,t) : x € R", t > 0} and values in a Banach space X with non-tangential maximal function
in [P (R"). We will not assume any additional property of X. Using the Poisson transform we will see in Section 2 that for
p>1, h% (R’fl) is isomorphic to the space of measures of bounded p-variation and values in X. For 0 < p < 1, we study
in Section 3 the boundary limits as X-valued temperate distributions of the elements of b’;g (R”++1). For these distributions
denoted by HE (R"), we prove an extension of the theorems by Latter [11] and Coifman [6] giving atomic decompositions
for the elements of the real Hardy spaces HP(R"). The atoms in this setting are vector measures having ad-hoc size and
cancellation properties. The proof of this follows the strategy of the scalar case. First we notice that the complex modulus
can be replaced directly by the norm in X so that the classical result by Fefferman-Stein can be reproduced in this context
to show that various maximal functions can be used to define H’;g (R"), including the so called grand maximal function. Then
the decomposition follows from a version of the Calderén-Zygmund decomposition. The construction will follow the lines
of the proof of the scalar result presented in [15].

Prior to this work Blasco and Garcia-Cuerva showed an atomic decomposition for elements in boundary Banach valued
Hardy spaces on the disk in [4], and Pérez-Esteva and Rivera-Noriega made a general atomic decomposition in [13] for
elements in boundary Banach valued Hardy spaces on Lipschitz domains in the case p = 1. In [3] Blasco obtained forp > 1
arepresentation for the Hardy spaces h% (]R'f]) in terms of cone p-summing operators.

Throughout this paper, X will always denote a complex Banach space. We will say that a functionu : 2 C R" — Xis
harmonic if Au = 0. A function u is harmonic if and only if it is weakly harmonic, namely if e* o u is a complex harmonic
function for any e* € X* (see [14]).
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Now we summarize the basic facts about X-valued measures that will be used in the paper. We refer the reader to the
monographs [8,7] for details on this topic. Consider B(£2) as the Borel algebra on £2 C R" and A as the Lebesgue measure
on R". We will write A(A) = |A].

Let u be a Borel measure in a Borel set £2 C R" with values in X, which we will always assume countable additive. We
will say that x has bounded variation if

|L](£2) = sup { :Z ||u(E)||X] - 7r finite Borel partition of 2 } < +oo0.

Eem

In this case, | |(E), defined as before, defines a positive countable additive measure in B(£2) (see [7]). We will say that such
s regular if || is a positive regular additive measure. Notice that this holds if £2 = R" since R" is 0 — compact and |u| is
finite.

M (£2) will denote the space of all Borel X-valued measures in B(§2) such that are regular, countable additive and with
bounded variation.

Let B be a Banach space in duality with X and p € 9x(£2), then for a simple measurable function f in £2 with values in
either B or C, we denote the vector integration

/f(X) du(x) (1)
2

defined in the obvious way. This integration can be extended to a class of measurable functions called integrable with respect
to u (see [8,11.12]). In particular every ¢ € Cy (R"), the space of continuous functions in R" with values in B and vanishing
at infinity is integrable with respect to w, and the same holds if ¢ € Cy(R") = (o c(R"). In terms of (1), we have Singer’s
representation theorem (see [8,12])

Cox(RM)™ = My« (R") (2)

with [ |y @ny = [ [(R™).
Next, let £2 a Borel set in R". Denote by L’;g(_(z) the standard spaces of Bochner measurable functions such that ||f (-)||x €
[P (£2) with norm

1/p
Ifll, = { / ||f(x>||§dx} .
2

For 1 < p < oo and Q a closed cube, we denote by VXP (Q), the space of measures of bounded p-variation, that consists of the
measures p such that

|E[P—

Eem

1
i)
[]p(Q) = sup [Z ”M()”X} . 7 finite partition of Q } < 400,

when 1 < p < oo, and
Itloo(Q) = inf{C > 0 : [[u(E)llx = CIEl,E € Q,E € B} < +o0.
The spaces VE(Q) for p € (1, oo] are Banach spaces with norm (see [8])
Itz ) = llp(@).

We have continuous inclusions VXP(Q) - V;é(Q) if p < q; also we have the following.

Remark 1.1. Every measure y € V§§ (Q) is countably additive, A-continuous, and has bounded variation.

Iff € I5(Q), then fdx defines an element in V£(Q) such that Ifll2 @) = Ifdxllyz o) and conversely if 1 € VR(Q) has a

density f, then f € I%(Q). Hence there are isometric inclusions L% (Q) C VE(Q) forp > 1.
Let p > 1and q be the conjugate exponent of p, then for ¢ € L9(Q) or ¢ € L1(Q), with B a Banach space in duality with
X, one can define (starting with simple functions ¢), fQ @(x) du(x). Moreover we have the representation (see [8])

Q" = V2. 3)
Now we extend this notions to R".

Definition 1.2. We define VE(R"), p > 1, as the space of regular measures in the Borel algebra of bounded sets, such that
[Tl v2(Q) < Afor any cube Q. Then define

||M||v§(]1§n) = sup |ulp(Q)
QCR"

and V3 (R") as the measures u € My (R") that are A-continuous.
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For u € VE(R") we can define f]R” fdu for scalar functions f € LY(R") or for f € L} (R"), with B a Banach space in duality
with X, and the representation (3) also holds in this case.
Remark 1.1 implies that if © € V)‘(’(Q) with p > 1, then || defines a finite Borel measure in Q absolutely continuous
with respect to the Lebesgue measure and such that % € IP(Q). Using the inequality HfQ o du H < fQ lp| d|wl, for any
X

cube Q, we have the following characterization for the measures with bounded p-variation in R" (compare with [1]).

Lemma 1.3. Let u a vector measure, then u has bounded p-variation in R" with p > 1 if and only if there exists a nonnegative
function g € [P(R™) such that for all functions ¢ in L9(R"),

/«pdu 5/ lplg dx.
RN X RN

In this case it follows that g = d|u|/dA.

We denote by § the Schwartz space of rapidly decreasing C* functions in R” with the topology of a Fréchet space provided
by the seminorms ||@|l,s = SUDPyegn |x*3P ¢ (x)|, where o, B are n-tuples of non-negative integers. We call an X-valued
distribution to every continuous linear operator of 4 into X. We denote by 4 the space of all X-valued distribution and we
will write (f, ¢) = f(¢) foror ¢ € 8.Every u € Mx(R™) and p € VE(R™), in particular f € L% (R"), defines an element in
84 by (u, ¢) = [ ¢pdu. We will say that fi, — f in 8 if (fi, ) — (f, ¢) in X for all ¢ in 4.

For a function ¢, we will use the standard operators of translation and reflexion: 7,¢(y) = ¢(y — x) and”™ ¢(y) =
¢(—y) and the convolution (f * ¢)(¢) = (f, ¢ *x @), forp € Sand f € 8. Asin the scalar case f * ¢ € C°(R") with all its

derivatives having polynomial growth. The Fourier transform in & is an isomorphism defined as usual by f. o) = (., )
forf € 8, and ¢ € 8. We have

Fx¢) &) =FE)PE), ¢, fes (4)

2. Vector Hardy spaces
We start this section by defining vector-valued Hardy spaces of harmonic functions.

Definition 2.1. Foranyp > 0, we define the X-valued Hardy space h§ (]R’}r“) as the space of all X-valued harmonic functions
u defined in R"."" such that its non-tangential maximal function

My (W) (x) = sup [Ju(y, t)llx

[x—yl<t
belongs to the space [P (R").
We provide b (R"+") with the norm
llullge = Nl Mae @Ol
when p > 1, and for p < 1 the p-norm
lullyy = I Muc @)1
As in the scalar case we notice that u € h% implies that
lux, Ollx < (IMpeull)t"?, VxeR", t >0, (5)
and
luC, Olly < [[Mpull, t" 7, t>0. (6)

Whenp > 1, b% (]R'}r“) is related to L’%(R”) throughout the Poisson transform; however, that space is isomorphic to the
larger space VE(R™).
nJZrl

Let P, (x) = cpt/(t> + |x|2)nT+1 be the Poisson kernel in R", with ¢, = I'((n + 1)/2)/7 = . It is not difficult to see that
the integral

u(x, £) = / P(x— y) du(). ™
]Rﬂ

t > 0,x € R", is well defined for u € VE(R"), p > 1,and u € My (R"). We will write u(x, t) = P; * w(x).
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Notice that if e* € X*, then (e* o u)(x, t) = fR" Pi(x — y) d(e* o u)(y) is harmonic since it is the Poisson integral of a
complex measure; thus u is harmonic. Since

lut, r)nxs/ Pex — ) d |l @),
Rﬂ

we have that ||u(x, t)||x is bounded by the Poisson integral of a function in LP(R") or a finite positive Borel measure. Then
we conclude by the scalar theory that if p > 1, M,.u € [P(R") and the following isometric inclusion holds:
VER") < br R}, ®)

Ifue V§(R") has a density f and p > 1, we have that u(-, t) — f in [P(R") and almost everywhere, since the Lebesgue
differentiation theorem holds for the X-valued functions and the proof of the scalar statement can be adapted to this setting.

Now we represent the Hardy spaces bé’g(R“ﬁ]) for p > 1 as the Poisson integral of vector measures (compare with the
result [3] where the representation is in terms of cone p-summing operators).

Proposition 2.2. Let p > 1, then every u € h’;g(R"j]) is the Poisson integral of a measure ;1 € VE(R"). Moreover for
u(x, t) = f]R,, Pi(x — y) duu(y), we have that u(-, t) — w in 8 ast tends to zero.

Hence for p > 1, the Poisson transform is an isomorphism of V;‘; (R™) onto h%(ﬂ&iﬂ) and for p = 1 the Poisson transform is
an isomorphism of a subspace of Vi (R™) onto h(R).

Proof. Suppose thatp > 1andletu € hgg(RTl). By (3), the following inclusions hold:
LR < .. (R") < VE.(R") = [LL.®Y]".

Consider the X-valued functions u;(x) = u(x, t) defined in R". Since M, (u) € LP(R"), the set {u;};~¢ is bounded in L§(]R”),
implying that {u;dx}. is bounded in VXP** (R™). The Alouglou Theorem implies the existence of a measure p in pr** and a

sequence t; “\, 0 such that u, — w in the w* topology in [L%. (R")]". Now, if e* € X* then P,(x — -) - €* € L%, (R"), with
1/p+ 1/q = 1.Then

(U, Pe(x — ) - e*) — (u, Pe(x —-) - ")
implying that

(ux, t+ ), e*) = </ Pe(x — y)u(y, ti) dy, e*>

— </ Pi(x —y) du(y), e*>-

Hence u(x, t) = Py * u(x).
When p = 1 we have instead

Ly (R") <> Ly (R") <> Myes (R") = Co (R

As before, we get a measure . € My such that u, — p in the weak star topology and u(x, t) = P; * u(x). Let us see that
this measure 1 is A-continuous. For every £ € X***, the complex measure o has a density in L' (R") since it is the boundary
limit of the scalar function £ o u € p'(R}") = pL(R}") and it is known that HL(R") is a subspace of L'(R"). Hence, if a
Borel set A has Lebesgue measure zero, then £ o ;(A) = 0 for every £ € X***; thus w(A) = 0 and u is A-continuous.

Now it remains to prove that the measure ¢ obtained above takes all its values in X. Suppose that there exists a Borel set
Asuch that ©(A) € X**\ X and |A| < +oc. The Hahn-Banach theorem assures the existence of a functional £ € (X**)* such
that £(X) = 0 and £(«(A)) = 1. Then the scalar function v = £ o u is harmonic and M, (v) € [P(R"), so that v = P; * g for
some g € 1P (R") (see Ill. 4.1 of [15]). Since v = £ ou = P; % (£ o ) we obtain g = £ o . Hence v(-, t) converges to g in
[P(R") and

lim/vt dx = g(A). 9)
t—0 A

Now we calculate

/v(x, t)ydx = /Zou(x, tydx=¢ (/u(x, t) dx) =0, (10)
A A A

because u(x, t) € X for every point (x, t) in R’fl, while

g(A)=/ d(zom<x)=6</ du(X)) —1 (1)
A A
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From Eqgs. (9)-(11) we obtain

O:lim/v(x,t)dx:/gdx:l.
t—>OA A

This contradiction yields to our claim that u is X-valued. The representation is proved for all p > 1 and by (8) the Poisson
kernel maps V2 (R") onto h% (R ).
The representation is proved for all p > 1 and by (8) the Poisson kernel maps VX” (R™) onto h%(R’}r“) forp>1. O

Remark 2.3. The precise description of the measures in the previous proposition for p = 1 is part of Theorem 3.2 below.
Notice that from the proof of Proposition 2.2 we see that, similar to the scalar case, if we define the vector Hardy space in
R’ as the space of harmonic functions such that

sup lux, t)|lx dx < +o0,
t>0 JR"

then the boundary limits of functions in this vector Hardy space is the space 9ix (R").
Now we shall prove that for any u € b’% withp < 1, u(-, t) converges in S as t — 0, and this distribution is bounded,
namely, the convolution f * ¢ is a bounded function for all ¢ € §.
When f is a bounded X-valued distribution we can define f x g € 8 forallg € L'(R"™), as
fxg.0)=(=*"9"8).
Notice that functions f € ng and measures (& € VX” are bounded distributions. In fact ||f % ¢(x)|lx < ||f||L§ ||<p||L§ and
e o@)lle < lellye lgllyg forallx € R™.

Remark 2.4. If the scalar distribution e* o f is bounded for every e* € X*, then f is a bounded X-valued distribution.

In fact, for any e* € X* the scalar function (e* o f) * ¢ is uniformly bounded on R" because (e* o f) * ¢ is continuously
differentiable, but (e* o f) * @ (x) = e*(f * ¢(x)). This implies that the set {f * ¢(x) : x € R"} C X is weakly bounded, and
hence bounded, so that there exists a constant C, that satisfies ||f * ¢(x)[lx < C, for all x € R". Therefore f is a bounded
distribution.

Theorem 2.5. Let u € h;’{(m“), p < 1. Ifwe consider f; = u(-, t), then there exists a bounded X-valued distribution f such
that lim¢_,¢ fr = f in Sg and f uniquely determines u.

Proof. We consider the family of functions u, in R"j’l, T > 0, defined by u, (x, t) = u(x, t + t). Then M, u, < M,:u; hence
u, € bR (RY), and by (6) we get u, € hL(R"") forevery t > 0.
Write f;(x) = u(x, t), then f; € L%(R“) with ||ft||Lz;( < [[Mneull, for all t > 0; thus convolution f; * P; is well defined,

and because differentiability of u, in all (x,t) € R’f] it follows that u,(x,t) = f; x P;(x) for all (x,t) € RT]. Hence
u(x,t) =u;(x,t — t) = f; * P,_;(x); therefore,

fi(x) = fo % P (x).

This equality shows that f; is the convolution of the Poisson kernel and the X-valued function f;. From (4) we get

fi®) =& P_) " ®). (12)
But (Pi_;)" () = e 27K¥I=®) and from (12) we have

fi(®) e = fr (&) el (13)
Now define the X-valued function ¢ : R" — X as

Y(E) =fi€) B (14)
Hence

[ @ e, =

fo], = [ oo sz e
Rn

where N = n/p — n > 0, which implies ||/ (£) ||y < Ct™N e*™ It forall t > 0; thus

lW @l < Cinfe™ 78l = Cle ™.
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Hence v defines an X-valued distribution. Let f € &5 be such thatf = /. Now we will prove that f = lim_,¢ f; in 8%. Let
¢ € 4, then

lim(f;, ¢) = lim/ feX)p(x) dx
t—0 t—>0 Jpn

— lim / W(E) e 2T () (&) de
lRﬂ

t—0

_ / FEOF(@)E) dE
Rn
— 1. 9).

Moreover,

If * @Ol = | (" mpd [, = lim [ (. mep) | < Ml Dl
and f is a bounded distribution. Finally, from (14) and f =y we see that u(x, t) = f * P;(x); hence f determines uniquely
u. g

Like in the scalar case, we can characterize the boundary values of vector Hardy spaces bgi (R’f]) by maximal functions.

For the function @ € 8 we define the maximal Mof (x) = sup;.¢ [If * @¢|lx. Let ¥ be a finite family of seminorms |- ||,
indandlet 8y ={p € 8 : llgll, s < 1,VI|-ly g € F}, we define the grand maximal Mzf(x) = Supges, Mof (x), defined
in R".

Theorem 2.6. Let f € 8 and 0 < p < oo. Then the following statements are equivalent:

(i) there exists @ € & such that f @ +# 0, then Mgf € [P(R");
(ii) there exists ¥, a finite family of seminorms of &, such that M&f € L[P(R");
(iii) f is a bounded X-valued distribution and My.u € [P(R"), where u(x, t) = f * Py (x).

Replacing the complex modulus by the norm in X, we see that the proof of Theorem 2.6 is the same as the scalar one, see
for example [9,15], and it consists on proving that the gauges [Mof |, , l|M#f || and || My (f * P¢) ||, are all comparable with
constants that depend on p and n, only.

Definition 2.7. For p > 0 we define HQ(R”) as the space of all f € & satisfying any of the equivalent conditions (i)-(iii) in
Theorem 2.6.

Proposition 2.2, Theorem 2.5 and (iii) of Theorem 2.6 imply the next result.

Theorem 2.8. Let p > 0 and u an X-valued harmonic function in R”j]. Thenu € h’g(R"j]) ifand only if u = f * P, for some f
in HE (R™).

3. Atomic decomposition

We start by giving an estimate of a distribution applied to a bump function in terms of a maximal function.

Lemma 3.1. Let Ny > O fixed and consider Sy, = {p € 8:dllyp < 1,Vl|e|, |B] < No} Let f be an X-valued distribution
and ¢ a function in 8 with support in a ball B = B(xo, 1), such that |8%¢| < r="~1% for all || < No, then

I, O)llx <= CMg f(x), Vxe€B.
Proof. For eachx € B € R" we put {,(y) = r"¢ (x — ry). Then

&) = (=139 (x — ry). (15)

The last quantity is not zero only if x — ry € B, which implies that |y| < 2.
Now |y| < 2 and (15) imply that
Yol = 2% 5% (x — ry)| < 2Mopm el
— 2MNo

’

for all multi indices such that |a|, |8] < No. It follows that |||, 5 < 2" and (1/2"0)¢, € Fy,. By definition of £, we have
(&r(x —y) = ¢(y). Then

.00 =, Cr&—2)) =, o (&) =f * (&)r(X).

Therefore
1, Ok < ZNOMfNOf(X)- O
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Next we will make a Calder6n-Zygmund type decomposition for vector measures. Denote the grand maximal by Mf
instead of M «f, as the finite set & will be fixed. @ will denote a function in €*°(R") with support in the unit ball in R" and
satisfying [., @ (x) dx # 0.

We will say that the family of sets {Ay}xen has the bounded intersection property when there exists an integer number
M > 0 such that any point in R" belongs at the most to M sets of the family.

Theorem 3.2 (Calderén-Zygmund Decomposition). Let © € 9Mx(R™) be absolutely continuous with respect to the Lebesgue
measure for every cube Q C R". Suppose that Mu € I[P(R™) with p > 0. Then for any fixed constant A > 0 there exists a
decomposition p = w + v, v = Y, v, and a collection of cubes {Q; }xen, such that

1. {Q/'} has the bounded intersection property, and
LJQ,;k ={x: Mukx) > A}.
k

2. Each measure vy is supported in Q;, vy (R") = 0 and satisfies

(Mpvp)? <C | (Mp)P. (16)
RY *

Q
lollyge any < CA. (17)

Remark 3.3. If0 < p < 1, then the measures v and w of Theorem 3.2 belong to H’;g. In fact, (16) and Theorem 2.6 imply that
v € HE for allk € N, and

Wiy = 3wty <Y [ < em [ .
x keN £ keN Y QF 2

Thus, v € H%, and so does the measure @ = 1 — v. The measure w satisfies the inequality
I = ol = vl < oM [ (aup. (18)
X X k7]

Proof of Theorem 3.2. We define the open set 2 = {x € R" : Mu(x) > A}. Consider a Whitney decomposition for 2,
namely a family of closed cubes {Qx} such that (i) 2 = (J;oy Q. (ii) Q¢ () Q= @, for all i # j, where Q; is the interior of
the cube Q and (iii) dy, < d(Qx, R™\ £2) < 4d,, dy is the diagonal of the cube Q; and d(Qy, R" \ §2) is the distance from cube
Qi tosetF. N

Ifwelet 1 < @ < a* and Q and Q; are the result of dilating Q, by @ and a*, we can choose a* close enough to 1 so that

Uiy Q¢ = £2. The families {Q;} and {(jk} have the bounded intersection property. Let M be the biggest number of sets of
these families containing a single point in R". We have that Q;" () Q* # @ implies dy - d;.

Now we consider the standard partition of the unity for the set £2 subordinated to the covering {ak}: Let ¢ be smooth
function taking the value 1 in the cube of side length and centered at the origin and vanishing outside the cube with the
same center and side a. We set gy (x) = ¢ ((x — xk)/(dk/\/ﬁ)), where x; is the center of Qy.

Now we define ¢, = ¢/ Zj ;. The function ¢y satisfies

/ dr(x) dx = |Qk*| “ Z (19)
Rn

We put ¢y = &/ [ br. getting f$k = land

102 (x)] < Cpd; . (20)

Let # be the space of polynomials in R" and % be the finite-dimensional vector space of polynomials of degree <d in R".
We choose an integer d such that p > n/(n + d + 1). Let # be the Hilbert space L? (Q/, ¢« dx) and denote by #, to £y as a

subspace of #. The inner product (f, g)Lz(Q;) is the integral fQ,jf(x)g(x) dx, while (f, g) 4 is ka*f(x)g(x)ak(x) dx.

Let{q1, q2, ..., qv} be an orthonormal basis in #,, then (g;, qjgk)Lz(Q’j) = §;.Forq € # andx € Xthe productg-x € P®X
defines the application in 8 given by

¢'_> <Q'X,¢>:(q’¢)L2'X.



S. Pérez-Esteva, H. Ocampo-Salgado / J. Math. Anal. Appl. 403 (2013) 408-422 415

Define Py : 85 —> F#4 ® X by

N
Pe(f) =) ailf qihe)- (1)
i=1
Py is a projection on #;3 @ X and it satisfies ((iu — Pyu), qopy) = O forall g € Hy.
Now we define h, = P, and the block measure

dve = ¢y dpe — hyehy dx.

The measures vy satisfy the moment condition (v, q) = ka q(x) dvg(x) = 0 for every polynomial q in #;.
To prove (16) we need the bounds

Mg vi(x) < cMpu(x), xe€Qy, (22)
n+d+1
Mgv(x) < A—F*——— x Q. (23)

|X _ xk|n+d+1 ?

In fact, inequalities (22) and (23) imply that

/(M®V7<)p = (/ +/ )(M45V7<)p
o Japr

d;1+d+1 p
Mup)P A—F—— dx.
Q;f( ,u) +/(Q’:‘)C |X_Xk|n+d+1

Calculating the last integral

1 0 1
p p(n+d+1) _ p 4p(n+d+1) n—1
(cA)Yd /(Q;)c [x — x; [Pnd+D) dx = cAd _/d, ey’ 4
K

IA

p 4p(n+d+1) jn—p(n+d+1)
CnpA"d), dy

= Cn,p,a*Ap|Qk*|

Cn,p,a* (Mﬂ)p7
&

IA

sincep > n/(n+d+ 1) and Mu(x) > Awhenx € Q; C £2. Hence (16) follows.
Now we show (22) and (23). First we claim that the polynomial h; satisfies

I )P |l < caA (24)

lhe O |lx < caMp(x) Vx e Q. (25)
From the fact that

sup [8%q(x)| < Apd, " llgllye, g € Pu, (26)

er,f

(see [15, p. 104]), we have in particular that |98q;| < A,g,Nd,:lﬂl for || > 0andi = 1,2, ..., N.Inequality (20) and the
Leibniz formula give us |38 (x)| < Aﬁdk_”_‘ﬂ'. We apply Lemma 3.1 for the function g;¢, and r = 5d; to obtain that

(1, aibd |, < cAand (1, )], < cMu(z) forz € Q.
Then we have

i=1

N
)P = H (Z qi(x)(ue, Qi$k>) Pr(x)

X
N

< > 16| [ (. qihe) | -
i=1

When x ¢ Q; every term vanishes in the last sum. If x € Q;f, the function ¢ is bounded by 1 and by (26) the polynomials g;
are uniformly bounded by a constant C, then

IhX)Pr(X) |l < caA,
proving the inequality (24).
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In similar way we prove (25):

N
e OGN < Y CMuR) = caMu(x), x€ Q.

i=1
Now we are ready for proving inequalities (22) and (23): We have
Mo vi(x) < Mo (¢ di) (x) + Mo (hii) (x). (27)

Let us analyze the first term. When x € Q; the convolution ¢y du * @;(x) is given by (i, ¢ P (x — -)). To apply Lemma 3.1,
we set

W) = W Pr(x — y). (28)
Then by the Leibniz rule,

1072y < {Cﬁwk@f—"_ﬂs when t < di

oody"?, whent > dy.

Also
supps = suppdi®;(x —-) C Q7 [ | Bx, 1),

where B(x, r) is the ball centered at x and radius r withr = t if t < d, while t = 2dy if t > d. Therefore for any t > 0 we
have

e dp * Pe () llx = {1, O llx < cMpu(x).
Hence

Mg (¢ dp)(x) < cMp(x), x € Q. (29)
To estimate Mg (hy ) (), we have by (25)

lher * P (X)|1x < / 1) llxc Pe(x —y) dy < caMpu(x), x€ Q.
We take the supremum for t > 0 and we get

Mg (ki) (x) < cMp(x), x € Q. (30)
From (27), (29) and (30) inequality (22) follows. By the moment condition on the measure v, we have

Vi *k D (X) = (v, Dp(x — 1)) = (v, Pr(x — ) — q),
where q is the Taylor’s polynomial of degree d for the function y — &;(x — y) aty = x;. Then

ik Pp(x) = (i dp, Pe(x — ) — q) — (i, Pe(x — ) — q),
thus

Mg vi(x) < sup(gy dp, @c(x — ) — q) + sup{huy, Pe(x — ) —q) =11 + Io.

t>0 t>0

Then we have for any 8 € N" that

dd+1 3
07122 =) = aO)NI < Ap e 7 (31)

thus, if we define the function

|X _ Xk|n+d+1

(W) = T WP =) —a)
k

we get |08¢| < A,gd,?"flﬂl. We apply Lemma 3.1 to p and ¢ obtaining ||{u, ¢)|lx < cA. Taking the supremumont > 0 we
get

n+d+1
dk

L1 <cA

= At 52
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To estimate I, we use (31) with 8 = 0, then

dd+1
h, Pe(x — -) — < lhlly —%——~ | d
b @169 = @l < Il - /O; y
dn+d+1
=A—F .
|X _ xk|n+d+l
Taking the supremum on t > 0 we get
Jrd+
L<cA—*k | 33
27 k= e Gy

and the proof of (23) is complete.
Now we can define the bad measure

V= E Vg.

keN
We define the good measure by

du(x), XxeR"\ 2
do(x) = {th(x)qbk(x) dx, xe .
k

It is clear that w + v = w. Finally we prove that € Vg°(R"). For E C 2, we have

lo(E)lly, < / (Z ||hk¢k||x> dx < ciAMIE|.
E\ &k

IfE C R"\ £2, we have w(E) = u(E), so we will see that || (E) ||« is bounded by cA|E|. In fact, consider a functional e* € X*,
and let e+ be the composition e* o w. By the assumption on wu, there exists f € L,loc (R™) such that duex(x) = f(x) dx
on every cube Q. On the other hand, we have |(e*, u(E))| = }fE limg_ g for * @ (X) dx|. Fatou’s lemma implies that
[(e*, w(E))| < lim,_ ¢ [; fer 5 @ (x)| dX. Also, for % D (X) = (€*, ju % D (x)). Hence

lw@E)llx < sup lim [ |fer * D ()] dx

le*llsx <1 t—0 JE

= sup lim [ [{e", u* @ (x))| dx

le*llx <1 t—0 JE
/Mu(x) dx
E

cA|E|.

The proof of Theorem 3.2 is complete now. O

IA

IA

Observe that in Theorem 3.2 we can replace the measure p by a distribution f € ]HI§ and let vy = (f — hy) ¢y, where the
polynomials h = Pif. We also have in this case that (16) holds. We define as before v = ), vy and @ = f — v with next
result.

Theorem 3.4. Let f be a distribution such that Mf € LP(R"). Then there exists a family of cubes {Q;'}, and a decomposition f =
o+ v withv = )" v, where vy are the distributions with compact support such that the points (1) and (2) of Theorem 3.2 hold
with (v, 1) = 0 and

n+1

M M c A S S— 34
s0(X) < CMFX)xoc(X) + ;(dkﬂx_xk')nﬂ (34)

Proof. As before we define w = f — v. It remains to prove (34). Assume first that x ¢ 2, then we have that
n+1 n+1
dy - d, .
X — X[ T (die + [x — xi )"
We have that Mo < Mof + ) oy Mo vk But Mo f < cMf, and this together with (23) with d = 0 implies that

n+1

Mgvp(x) < A—& 35
oVk(X) < et % —x (35)
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proving (34) when x ¢ £2. Now assume that x € £2 and let m such that x € Q;;. Then
o=f=Y w=Ff=> n—-Y v
keN N F

where k € N ifand only if QF N Q; # ¥and F = N — N. Recall that the set N that depends on m has finite cardinality
bounded by a fixed number M. When k € F we have that cd, < |x — x,|; then as before

n+1
dk

D Mau®) S A
If k € N we can split
f=2 we=f=2 0f =) e
N N N
For the last sum we know that [lquilly < cAand 1 < ¢udy™/(d + [x — xu[)"*". So we estimate

n+1
dm

(dm + |x — X )" +1 .

Y Mo (qup)(x) < Y cA < cAM < ¢ A
N N

Let @ the test function supported in the ball. Let us analyze the convolution of &, with f — " ¢f. Consider a constant co
such that codm = sup{r > 0 : B(x,r) C Q}. Then, for t < cody, we have (f — 3" ¢if) * P¢(x) = 0 due to the fact that
1—) . ¢« =0inQ,: and the support of & (x — -) is contained in B(x, t) C Q;;.For t > cod,, observe that

(f - ;w) * De(x) = <f, (1 - ;«m) By (x — ->>.

We consider the function ¢ = (1 - >N ¢/<) &, (x — -). Notice that §# SNk =Dn dk_lﬁlaﬁqb, and since the quantities dj
and d,, are comparable when Q; () Q% # @, then [3# 3", ¢x| < AzMdy,”'. We also have that |8 &;| < Agt ™"~ #1|38® |, but

t > codp; hence [38¢| < Aﬂymd,;nfwl. Applying Lemma 3.1 for the ball B = B(x, p) and p = cd,, with a constant c large
enough, so that B(") £2¢ # @, we obtain

I, )] = MF(y) < cA,
fory € B() £2¢. Hence

dn+1
su — *+ P (X)) <cA<cA m .
t ( ;‘M) a A+ k= 3aD™
Finally
Mpw < Mg (f - Z¢I<f> + ZMw(Qk¢k) + ZszUk
N N F
dn+1 dZ-H
< (c+emA - +AY —
(+an Dy

(dm + |X - Xrn|)n+1 keF

proving (34) whenx € 2. O
Corollary 3.5. The distribution w of Theorem 3.4 belongs to the space Hgg (R™).
Proof. We integrate (34),

n+1
Mow(x) dx < ¢ / MF (%) x ¢ (%) dx + A / > i
RN R

n+1 dx
" w = (dy + x — i)

IA

Al_pf MFP(x) dx + cA|R2| < 00
0nC
and Theorem 2.6 implies w € Hy. O

Theorem 3.6. Let p < 1, then the space Vi (R") () H (R") is dense in HE (R™).
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Proof. Letf € HE. If we set A, = k for every k € N, then by Theorem 3.4 there exist v and wy, distributions in H such that
f = wr+vand wy — f ask — oo in HE by (18). Then Corollary 3.5 implies that {w}reny € Vi (HE. O
Definition 3.7. Let p < 1. We say that a Borel X-valued measure p is a p-atom in X if it satisfies

1. supp u C B, where B is a ball.
1
2. |l < 1/IBI7.
3. u satisfies the moment condition fR,, x* dux) =0, forall jo| <n[1/p—1].

With the same proof as in the scalar case we have the following.

Proposition 3.8. Let p < 1, then

(a) if wis ap-atominX, then u belongs to H%(R”). Moreover, evaluated at w, any of the gauges defining H%(R") according to
Theorem 2.6 is bounded by a constant independent of .
(b) If {u;} is countable family of p-atoms in X and {A;} a sequence of complex numbers in £P(N), then the series

W= Z Al (36)
JjeN
belongs to HE (R™).

Now we will prove the converse of this proposition.

Proposition 3.9. For u € V}% N HE, p < 1, there exist a sequence {Aj}jen in £P and a family {u;}jen of p-atoms such that
= h,
JjeN

converging in $y and
>l < Cllly .

Proof. For eachj € Z Theorem 3.2 we decompose 11 = 0 + v, where v = 3", ¢ v and 20 = {x € R" : Mu(x) >
2} = UkeN(Qk(’))*.Notice that 20F) c 2. We know that o — w1 in Hj, whenj — 00,also [0 |« < 2,500 — 0
X
when j — —oo; therefore
N . -
u = lim oD — 0, (37)

N—oo .
J=—00

The terms w0+ — w? satisfy |0+ — w? | o < c2 and supp(0'™ — o) € 20,
Recall that the block measures are given by dv,ﬁ’) = d),f’) (du — h,(j)dx) and h,(j) = ,ﬁ’) /. We now define the polynomials
Hy; with degree d at the most as
Hi =P Vg (dp — bV do)). (38)
The polynomials Hy; satisfy
(i) Hir # 0when () M@  #0. , »
To see this, notice that Hy; = Z?’zl( ,E” (du — h,(’+]) dx), g ,(’H))q,-.
(i) diam[Q] > ¢ - diam[Q"*"] when (Q?)* N(Q"")* # 4.
(i) |Hiog! ™ 00 < 2.
X ) ) ~i
To see this we write Hy; = ZfV:]( ,E’) (du — h,(’H) dx), q; ,(’H))q,', where the polynomials q1, ¢>, ..., qy are a basis
of the Hilbert space LZ((Q,('H))*, ¢,(’+1) dx).
Now we estimate ” (qﬁk@ (du — h,(jH) dx), qi510+1)) H :
Let ¢ = ¢V qp’™". Since for some constants Az we have [3q;(x)] < Ag(d’™")7B1 1947V ()| < Ag

@)y =181 18P (x)| < Ag (@)1 < c(d7TV) 11, (see (26)) and by (ii), we get

[0 du,adi ™| <o, (39)
X
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To estimate (h,("“)qb,?) dx, q,-a,(H])), we have
1 S 1 1
. . ~it1 . ~ ~
|00 dx qdf™)| <> Hand? dx aid? 1 |t and?
m=1

but H (w, qm5,0+1))H <c2t'form=1,2,...,N,and
X

N N N
> lHangy dx ai ) = 1601 > lam dx, ai” ) =181 8w < 1.
m=1

m=1 m=1

We conclude that
|00 ax adt™)| < 2.
X
Inequalities (39) and (40) imply (iii).
(iv) >pen Hii = 0.1n fact,

j+1 ji+1 j+1 +1
> Her =P = ) xo01 = P [ =PIV )] = 0.
keN
Next we will construct the atoms. Notice that
WD _ o0 — 0 _ ,G+D

> dindu — b dx) = > "¢V dp — b dx).

keN leN
Then we let
oIt — 0 = ZAj,ka
keN

where the measures A; ; are defined as

A= o (dp — b dx) =3¢ VP (e — bV dx) + > Heg T dx.

leN leN

Eq. (41) holds since )", ¢,§j) =1in supp{¢,(i+1)}. We have the following:

(40)

(41)

(42)

1. The measures A; ; have support in a ball B,(f) that contains the cube (Q,?))* and all cubes (Q,O+1))* that intersect (Q4<O))*.

Moreover, by (ii), we may assume that |B,(<")| = c|Qk(i)|

2. The measures Aj ; are bounded by c2.In fact,

H [ eSS ¢,(j+l)¢,fj)u} (E)

leN

H /E Xeg, 0 () dn

X X

IA

c2'|E|,

due to (17). Moreover

o ao®] =< [ [ wof ] o<

and

leN

IA

/ ¢ ()2 M dx
E

c2|E|,

IA

= / ( ,?'%x)%”h?’”(x)qs}”“(x) HX> dx
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since every point x belongs to M cubes (Q,(j+1))* at the most. Finally

(ZH,{,,@U“) dx) B < /EZ HHk,l(X)qb[(i+])(X) ‘)X dx
X leN

leN
/ 2t IM dx
E

c2|E|.

IA

IA

3. The A; i satisfy the moment condition fRn x* dAj k(x), forall || < n[1/p — 1].In fact, dv,?) = ,ED (du — h,(j) dx) satisfies
this property. Also

= o —h) dx) + ) Heg! de= =" ¢ Vg0 (dp — nV dx) — Hyy dn,

leN leN leN
and the terms in the right hand side of this equation are of the form ¢,(i+1)(u — P,(iJr])M) which satisfy the moment
condition.
Now define

A = 2B)|»
ajx = AAG;/”lk'
k

Notice that the measures g; ; have support contained in B; y,

Al oo _ 2

_1
laidlye = ik = Bkl 7,

= 1
qu%}k|p
and they satisfy the required moment conditions. By (37) and (41), we have

u= Z)»j,kaj.k-

JEZ
keN
Finally
D ulP =) 2PQpl <M Y 27|20
Jez JEZ JEL
keN keN

IA

CMp Z/ M x e R : Mpu(x) > A} dA
= cup [ M0 = g Il .

Now we are ready to prove the existence of atomic decompositions for any element in H.

Theorem 3.10. Let p < 1, then for any f € HE there exist a sequence {A;} in £P and a sequence of p-atoms {a;} such that
n= ke,
JjEN

converging in $y and

AP < CIfIP,.
Dl < CIfI,

Proof. Let f € HY; then by Theorem 3.6 there exists a sequence {;}jen of measures in Vi () HE such that Wi — pin HE as
j — ooand H,ujﬂ — Mj”;]g{ <27 ||u||§ﬂp . Letting 1y = 0 we have
X

o0
= Wit —
=0
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By Proposition 3.9, for each j € N we have an atomic decomposition of measure 1 — pj € Vx [ Hgg,

Wjt1 — Hj = E Aj kG ks

keN
with
p
Z AjaelP < C |l pjn — Mj||H§ :
keN
Then
=" MG (43)
Jj,keN
and
Y il < Clipl?y . O
h X
J.keN

Contrasting with the scalar case, we should not expect in vector-valued Hardy spaces to have atomic decompositions
consisting of integrable functions. Recall that a Banach space X has the Radon-Nikodym property if every measure u €
Vsé (Q) has a density in ng (Q) for some cube Q (and then for every cube).

Proposition 3.11. All the elements of HY are functions (have a density in L}< (R™)) if and only if X has the Radon-Nikodym
property.

Proof. Suppose that every element of HL(R") has a density. Let Q be a cube in R" and v a measure in V;} (Q). Define the
measure © = v — vg dx, where vg = v(Q)/|Q|. Then  is a multiple of a 1-atom, and thus it belongs to H(R"). Our
assumption implies that  has a density so that u has a density too. From this it follows that X has the Radon-Nikodym
property. The other direction is clear if we remember that every 1-atom belongs to V;é ®"Y. O
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