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a b s t r a c t

We study Banach-valued Hardy spaces h
p
X(R

n+1
+ ) of harmonic functions in the upper half

space of Rn+1 defined in terms of maximal functions and the corresponding space of
distributional boundary limits Hp

X(R
n), where X is an arbitrary real or complex Banach

space. For p > 1 the elements of h
p
X(R

n+1
+ ) are the Poisson transform of Borel measures

with p-bounded variation and values in X. For p ≤ 1 we prove the existence of atomic
decomposition of elements in Hp

X(R
n) where the atoms are vector measures with certain

size and cancellation properties that generalize the atoms in the real valued Hardy spaces.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

Much work has been done in the study of Hardy spaces of holomorphic and harmonic functions in the disk and with
values in a Banach space. Questions like the existence of boundary values, equivalences of the various definitions of Hardy
spaces valid in the scalar case and atomic decompositions among others are linked to the properties of the Banach space
like the Radon–Nikodým properties or UMD (see for example [1–3,5,10]).

The purpose of this work is to study Hardy spaces that we will denote by h
p
X(R

n+1
+ ), consisting of harmonic functions in

the upper half space Rn+1
+ = {(x, t) : x ∈ Rn, t > 0} and values in a Banach space X with non-tangential maximal function

in Lp(Rn). We will not assume any additional property of X. Using the Poisson transform we will see in Section 2 that for
p > 1, hp

X(R
n+1
+ ) is isomorphic to the space of measures of bounded p-variation and values in X. For 0 < p ≤ 1, we study

in Section 3 the boundary limits as X-valued temperate distributions of the elements of h
p
X(R

n+1
+ ). For these distributions

denoted by Hp
X(R

n), we prove an extension of the theorems by Latter [11] and Coifman [6] giving atomic decompositions
for the elements of the real Hardy spaces Hp(Rn). The atoms in this setting are vector measures having ad-hoc size and
cancellation properties. The proof of this follows the strategy of the scalar case. First we notice that the complex modulus
can be replaced directly by the norm in X so that the classical result by Fefferman–Stein can be reproduced in this context
to show that various maximal functions can be used to define Hp

X(R
n), including the so called grandmaximal function. Then

the decomposition follows from a version of the Calderón–Zygmund decomposition. The construction will follow the lines
of the proof of the scalar result presented in [15].

Prior to this work Blasco and García-Cuerva showed an atomic decomposition for elements in boundary Banach valued
Hardy spaces on the disk in [4], and Pérez-Esteva and Rivera-Noriega made a general atomic decomposition in [13] for
elements in boundary Banach valued Hardy spaces on Lipschitz domains in the case p = 1. In [3] Blasco obtained for p ≥ 1
a representation for the Hardy spaces h

p
X(R

n+1
+ ) in terms of cone p-summing operators.

Throughout this paper, X will always denote a complex Banach space. We will say that a function u : Ω ⊂ Rn
→ X is

harmonic if ∆u = 0. A function u is harmonic if and only if it is weakly harmonic, namely if e∗
◦ u is a complex harmonic

function for any e∗
∈ X∗ (see [14]).
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Now we summarize the basic facts about X-valued measures that will be used in the paper. We refer the reader to the
monographs [8,7] for details on this topic. Consider B(Ω) as the Borel algebra onΩ ⊂ Rn and λ as the Lebesgue measure
on Rn. We will write λ(A) = |A|.

Let µ be a Borel measure in a Borel setΩ ⊂ Rn with values in X, which we will always assume countable additive. We
will say that µ has bounded variation if

|µ|(Ω) = sup


E∈π

∥µ(E)∥X


: π finite Borel partition ofΩ


< +∞.

In this case, |µ|(E), defined as before, defines a positive countable additive measure in B(Ω) (see [7]). Wewill say that such
µ is regular if |µ| is a positive regular additive measure. Notice that this holds ifΩ = Rn since Rn is σ − compact and |µ| is
finite.

MX(Ω)will denote the space of all Borel X-valued measures in B(Ω) such that are regular, countable additive and with
bounded variation.

Let B be a Banach space in duality with X and µ ∈ MX(Ω), then for a simple measurable function f inΩ with values in
either B or C, we denote the vector integration

Ω

f (x) dµ(x) (1)

defined in the obviousway. This integration can be extended to a class ofmeasurable functions called integrablewith respect
toµ (see [8, II.12]). In particular every φ ∈ C0,B(Rn), the space of continuous functions in Rn with values in B and vanishing
at infinity is integrable with respect to µ, and the same holds if φ ∈ C0(Rn) = C0,C(Rn). In terms of (1), we have Singer’s
representation theorem (see [8,12])

C0,X(Rn)∗ = MX∗(Rn) (2)

with ∥µ∥MX(Rn) = |µ|(Rn).

Next, letΩ a Borel set in Rn. Denote by LpX(Ω) the standard spaces of Bochner measurable functions such that ∥f (·)∥X ∈

Lp(Ω)with norm

∥f ∥p =


Ω

∥f (x)∥p
Xdx

1/p

.

For 1 < p ≤ ∞ and Q a closed cube, we denote by V p
X(Q ), the space ofmeasures of bounded p-variation, that consists of the

measures µ such that

|µ|p(Q ) = sup




E∈π

∥µ(E)∥p
X

|E|p−1

 1
p

: π finite partition of Q

 < +∞,

when 1 < p < ∞, and

|µ|∞(Q ) = inf {C > 0 : ∥µ(E)∥X ≤ C |E|, E ⊆ Q , E ∈ B} < +∞.

The spaces V p
X(Q ) for p ∈ (1,∞] are Banach spaces with norm (see [8])

∥µ∥Vp
X(Q )

= |µ|p(Q ).

We have continuous inclusions V p
X(Q ) ⊂ V q

X(Q ) if p < q; also we have the following.

Remark 1.1. Every measure µ ∈ V p
X(Q ) is countably additive, λ-continuous, and has bounded variation.

If f ∈ LpX(Q ), then f dx defines an element in V p
X(Q ) such that ∥f ∥LpX(Q )

= ∥f dx∥Vp
X(Q )

and conversely if µ ∈ V p
X(Q ) has a

density f , then f ∈ LpX(Q ). Hence there are isometric inclusions LpX(Q ) ⊂ V p
X(Q ) for p > 1.

Let p > 1 and q be the conjugate exponent of p, then for ϕ ∈ Lq(Q ) or ϕ ∈ LqB(Q ), with B a Banach space in duality with
X, one can define (starting with simple functions ϕ),


Q ϕ(x) dµ(x).Moreover we have the representation (see [8])

LqX(Q )
∗

= V p
X∗(Q ). (3)

Now we extend this notions to Rn.

Definition 1.2. We define V p
X(R

n), p > 1, as the space of regular measures in the Borel algebra of bounded sets, such that
∥µ∥Vp

X(Q )
≤ A for any cube Q . Then define

∥µ∥Vp
X(R

n) = sup
Q⊆Rn

|µ|p(Q )

and V 1
X(R

n) as the measures µ ∈ MX(Rn) that are λ-continuous.



410 S. Pérez-Esteva, H. Ocampo-Salgado / J. Math. Anal. Appl. 403 (2013) 408–422

Forµ ∈ V p
X(R

n)we can define


Rn f dµ for scalar functions f ∈ Lq(Rn) or for f ∈ LqB(R
n), with B a Banach space in duality

with X, and the representation (3) also holds in this case.
Remark 1.1 implies that if µ ∈ V p

X (Q ) with p > 1, then |µ| defines a finite Borel measure in Q absolutely continuous

with respect to the Lebesgue measure and such that d|µ|

dλ ∈ Lp(Q ). Using the inequality
Q ϕ dµ


X

≤

Q |ϕ| d|µ|, for any

cube Q , we have the following characterization for the measures with bounded p-variation in Rn (compare with [1]).

Lemma 1.3. Let µ a vector measure, then µ has bounded p-variation in Rn with p > 1 if and only if there exists a nonnegative
function g ∈ Lp(Rn) such that for all functions ϕ in Lq(Rn),

Rn
ϕ dµ


X

≤


Rn

|ϕ|g dx.

In this case it follows that g = d|µ|/dλ.

Wedenote byS the Schwartz space of rapidly decreasingC∞ functions inRn with the topology of a Fréchet space provided
by the seminorms ∥φ∥αβ = supx∈Rn |xα∂βφ(x)|, where α, β are n-tuples of non-negative integers. We call an X-valued
distribution to every continuous linear operator of S into X. We denote by S′

X the space of all X-valued distribution and we
will write ⟨f , φ⟩ = f (φ) for or φ ∈ S. Every µ ∈ MX(Rn) and µ ∈ V p

X(R
n), in particular f ∈ LpX(R

n), defines an element in
S′

X by ⟨µ, φ⟩ =

φdµ. We will say that fk → f in S′

X if ⟨fk, φ⟩ → ⟨f , φ⟩ in X for all φ in S.
For a function φ, we will use the standard operators of translation and reflexion: τxφ(y) = φ(y − x) and ˇ φ(y) =

φ(−y) and the convolution (f ∗ φ)(ϕ) = ⟨f ,ˇφ ∗ ϕ⟩, for ϕ ∈ S and f ∈ S′
X. As in the scalar case f ∗ φ ∈ C∞

X (R
n)with all its

derivatives having polynomial growth. The Fourier transform in S′
X is an isomorphism defined as usual by ⟨f̂ , ϕ⟩ = ⟨f , ϕ̂⟩

for f ∈ S′
X and ϕ ∈ S. We have

(f ∗ φ) ˆ(ξ) = f̂ (ξ)φ̂(ξ), φ ∈ S, f ∈ S′

X. (4)

2. Vector Hardy spaces

We start this section by defining vector-valued Hardy spaces of harmonic functions.

Definition 2.1. For any p > 0,we define theX-valuedHardy space h
p
X(R

n+1
+ ) as the space of allX-valued harmonic functions

u defined in Rn+1
+ such that its non-tangential maximal function

Mnt(u)(x) = sup
|x−y|<t

∥u(y, t)∥X

belongs to the space Lp(Rn).

We provide h
p
X(R

n+1
+ )with the norm

∥u∥h
p
X

= ∥Mnt(u)∥p

when p ≥ 1, and for p < 1 the p-norm

∥u∥h
p
X

= ∥Mnt(u)∥p
p .

As in the scalar case we notice that u ∈ h
p
X implies that

∥u(x, t)∥X ≤ (∥Mntu∥p)t
−

n
p , ∀x ∈ Rn, t > 0, (5)

and

∥u(·, t)∥1 ≤ ∥Mntu∥p t
n− n

p , t > 0. (6)

When p > 1, hp
X(R

n+1
+ ) is related to LpX(R

n) throughout the Poisson transform; however, that space is isomorphic to the
larger space V p

X(R
n).

Let Pt(x) = cnt/(t2 + |x|2)
n+1
2 be the Poisson kernel in Rn, with cn = Γ ((n + 1)/2)/π

n+1
2 . It is not difficult to see that

the integral

u(x, t) =


Rn

Pt(x − y) dµ(y), (7)

t > 0, x ∈ Rn, is well defined for µ ∈ V p
X(R

n), p > 1, and µ ∈ MX(Rn). We will write u(x, t) = Pt ∗ µ(x).
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Notice that if e∗
∈ X∗, then (e∗

◦ u)(x, t) =


Rn Pt(x − y) d(e∗
◦ µ)(y) is harmonic since it is the Poisson integral of a

complex measure; thus u is harmonic. Since

∥u(x, t)∥X ≤


Rn

Pt(x − y) d |µ| (y),

we have that ∥u(x, t)∥X is bounded by the Poisson integral of a function in Lp(Rn) or a finite positive Borel measure. Then
we conclude by the scalar theory that if p > 1,Mntu ∈ Lp(Rn) and the following isometric inclusion holds:

V p
X(R

n) ↩→ h
p
X(R

n+1
+
). (8)

If µ ∈ V p
X(R

n) has a density f and p ≥ 1,we have that u(·, t) → f in Lp(Rn) and almost everywhere, since the Lebesgue
differentiation theorem holds for theX-valued functions and the proof of the scalar statement can be adapted to this setting.

Now we represent the Hardy spaces h
p
X(R

n+1
+ ) for p ≥ 1 as the Poisson integral of vector measures (compare with the

result [3] where the representation is in terms of cone p-summing operators).

Proposition 2.2. Let p ≥ 1, then every u ∈ h
p
X(R

n+1
+ ) is the Poisson integral of a measure µ ∈ V p

X(R
n). Moreover for

u(x, t) =


Rn Pt(x − y) dµ(y), we have that u(·, t) → µ in S′
X as t tends to zero.

Hence for p > 1, the Poisson transform is an isomorphism of V p
X(R

n) onto h
p
X(R

n+1
+ ) and for p = 1 the Poisson transform is

an isomorphism of a subspace of V 1
X(R

n) onto h1
X(R

n+1
+ ).

Proof. Suppose that p > 1 and let u ∈ h
p
X(R

n+1
+ ). By (3), the following inclusions hold:

LpX(R
n) ↩→ LpX∗∗(Rn) ↩→ V p

X∗∗(Rn) ∼=

LqX∗(Rn)

∗
.

Consider the X-valued functions ut(x) = u(x, t) defined in Rn. Since Mnt(u) ∈ Lp(Rn), the set {ut}t>0 is bounded in LpX(R
n),

implying that {utdx}t>0 is bounded in V p
X∗∗(Rn). The Alouglou Theorem implies the existence of a measure µ in V p

X∗∗ and a
sequence tk ↘ 0 such that utk → µ in the ω∗ topology in


LqX∗(Rn)

∗. Now, if e∗
∈ X∗ then Pt(x − ·) · e∗

∈ LqX∗(Rn), with
1/p + 1/q = 1. Then

⟨utk , Pt(x − ·) · e∗
⟩ −→ ⟨µ, Pt(x − ·) · e∗

⟩

implying that
u(x, t + tk), e∗


=


Pt(x − y)u(y, tk) dy, e∗


→


Pt(x − y) dµ(y), e∗


.

Hence u(x, t) = Pt ∗ µ(x).
When p = 1 we have instead

L1X(R
n) ↩→ L1X∗∗(Rn) ↩→ MX∗∗(Rn) ∼= C0,X∗(Rn)∗.

As before, we get a measure µ ∈ MX∗∗ such that utk → µ in the weak star topology and u(x, t) = Pt ∗ µ(x). Let us see that
thismeasureµ isλ-continuous. For every ℓ ∈ X∗∗∗, the complexmeasure ℓ◦µ has a density in L1(Rn) since it is the boundary
limit of the scalar function ℓ ◦ u ∈ h1(Rn+1

+ ) = h1
C(R

n+1
+ ) and it is known that H1

C(R
n) is a subspace of L1(Rn). Hence, if a

Borel set A has Lebesgue measure zero, then ℓ ◦ µ(A) = 0 for every ℓ ∈ X∗∗∗; thus µ(A) = 0 and µ is λ-continuous.
Now it remains to prove that the measureµ obtained above takes all its values in X. Suppose that there exists a Borel set

A such thatµ(A) ∈ X∗∗
\X and |A| < +∞. The Hahn–Banach theorem assures the existence of a functional ℓ ∈ (X∗∗)∗ such

that ℓ(X) = 0 and ℓ(µ(A)) = 1. Then the scalar function v = ℓ ◦ u is harmonic and Mnt(v) ∈ Lp(Rn), so that v = Pt ∗ g for
some g ∈ Łp(Rn) (see III. 4.1 of [15]). Since v = ℓ ◦ u = Pt ∗ (ℓ ◦ µ) we obtain g = ℓ ◦ µ. Hence v(·, t) converges to g in
Lp(Rn) and

lim
t→0


A
vt dx = g(A). (9)

Now we calculate
A
v(x, t) dx =


A
ℓ ◦ u(x, t) dx = ℓ


A
u(x, t) dx


= 0, (10)

because u(x, t) ∈ X for every point (x, t) in Rn+1
+ , while

g(A) =


A
d(ℓ ◦ µ)(x) = ℓ


A
dµ(x)


= 1. (11)
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From Eqs. (9)–(11) we obtain

0 = lim
t→0


A
v(x, t) dx =


A
g dx = 1.

This contradiction yields to our claim that µ is X-valued. The representation is proved for all p ≥ 1 and by (8) the Poisson
kernel maps V p

X(R
n) onto h

p
X(R

n+1
+ ).

The representation is proved for all p ≥ 1 and by (8) the Poisson kernel maps V p
X(R

n) onto h
p
X(R

n+1
+ ) for p > 1. �

Remark 2.3. The precise description of the measures in the previous proposition for p = 1 is part of Theorem 3.2 below.
Notice that from the proof of Proposition 2.2 we see that, similar to the scalar case, if we define the vector Hardy space in
Rn+1

+ as the space of harmonic functions such that

sup
t>0


Rn

∥u(x, t)∥X dx < +∞,

then the boundary limits of functions in this vector Hardy space is the space MX(Rn).

Now we shall prove that for any u ∈ h
p
X with p < 1, u(·, t) converges in S ′

X as t → 0, and this distribution is bounded,
namely, the convolution f ∗ φ is a bounded function for all φ ∈ S.

When f is a bounded X-valued distribution we can define f ∗ g ∈ S′
X for all g ∈ L1(Rn), as

⟨f ∗ g, ϕ⟩ = ⟨f ∗ˇϕ,ˇg⟩.

Notice that functions f ∈ LpX and measures µ ∈ V p
X are bounded distributions. In fact ∥f ∗ ϕ(x)∥X ≤ ∥f ∥LpX

∥ϕ∥LqX
and

∥µ ∗ ϕ(x)∥X ≤ ∥µ∥Vp
X
∥ϕ∥LqX

for all x ∈ Rn.

Remark 2.4. If the scalar distribution e∗
◦ f is bounded for every e∗

∈ X∗, then f is a bounded X-valued distribution.

In fact, for any e∗
∈ X∗ the scalar function (e∗

◦ f ) ∗ ϕ is uniformly bounded on Rn because (e∗
◦ f ) ∗ ϕ is continuously

differentiable, but (e∗
◦ f ) ∗ ϕ(x) = e∗(f ∗ ϕ(x)). This implies that the set {f ∗ ϕ(x) : x ∈ Rn

} ⊂ X is weakly bounded, and
hence bounded, so that there exists a constant Cϕ that satisfies ∥f ∗ ϕ(x)∥X ≤ Cϕ for all x ∈ Rn. Therefore f is a bounded
distribution.

Theorem 2.5. Let u ∈ h
p
X(R

n+1
+ ), p < 1. If we consider ft = u(·, t), then there exists a bounded X-valued distribution f such

that limt→0 ft = f in S ′
X and f uniquely determines u.

Proof. We consider the family of functions uτ in Rn+1
+ , τ > 0, defined by uτ (x, t) = u(x, t +τ). ThenMntuτ ≤ Mntu; hence

uτ ∈ h
p
X(R

n+1
+ ), and by (6) we get uτ ∈ h1

X(R
n+1
+ ) for every τ > 0.

Write ft(x) = u(x, t), then ft ∈ LpX(R
n) with ∥ft∥LpX

≤ ∥Mntu∥p for all t > 0; thus convolution fτ ∗ Pt is well defined,

and because differentiability of uτ in all (x, t) ∈ Rn+1
+ it follows that uτ (x, t) = fτ ∗ Pt(x) for all (x, t) ∈ Rn+1

+ . Hence
u(x, t) = uτ (x, t − τ) = fτ ∗ Pt−τ (x); therefore,

ft(x) = fτ ∗ Pt−τ (x).

This equality shows that ft is the convolution of the Poisson kernel and the X-valued function fτ . From (4) we get

f̂t(ξ) = f̂τ (ξ)(Pt−τ ) ˆ(ξ). (12)

But (Pt−τ ) ˆ(ξ) = e−2π |ξ |(t−τ) and from (12) we have

f̂t(ξ) e2π |ξ |t
= f̂τ (ξ) e2π |ξ |τ . (13)

Now define the X-valued function ψ : Rn
→ X as

ψ(ξ) = f̂t(ξ) e2π |ξ |t . (14)

Henceψ(ξ) e−2π |ξ |t


X =

f̂t(ξ)
X

≤


Rn

∥u(x, t)∥X dx ≤ Ct−N

where N = n/p − n > 0, which implies ∥ψ(ξ)∥X ≤ Ct−N e2π |ξ |t for all t > 0; thus

∥ψ(ξ)∥X ≤ C inf
t>0

t−N e2π |ξ |t
= C |ξ |N .
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Hence ψ defines an X-valued distribution. Let f ∈ S′
X be such that f̂ = ψ . Now we will prove that f = limt→0 ft in S′

X. Let
φ ∈ S, then

lim
t→0

⟨ft , φ⟩ = lim
t→0


Rn

ft(x)φ(x) dx

= lim
t→0


Rn
ψ(ξ) e−2π |ξ |tF−1(φ)(ξ) dξ

=


Rn
ψ(ξ)F−1(φ)(ξ) dξ

= ⟨f , φ⟩.

Moreover,

∥f ∗ ϕ(x)∥X =
⟨f ,ˇτxϕ⟩


X = lim

t→0

⟨ft ,ˇτxϕ⟩


X ≤ ∥Mntu∥p ∥ϕ∥q

and f is a bounded distribution. Finally, from (14) and f̂ = ψ we see that u(x, t) = f ∗ Pt(x); hence f determines uniquely
u. �

Like in the scalar case, we can characterize the boundary values of vector Hardy spaces h
p
X(R

n+1
+ ) by maximal functions.

For the functionΦ ∈ S we define the maximalMΦ f (x) = supt>0 ∥f ∗ Φt∥X. Let F be a finite family of seminorms ∥·∥α,β
in S and let SF = {ϕ ∈ S : ∥ϕ∥α,β ≤ 1,∀ ∥·∥α,β ∈ F }, we define the grand maximal MF f (x) = supΦ∈SF

MΦ f (x), defined
in Rn.

Theorem 2.6. Let f ∈ S′
X and 0 < p ≤ ∞. Then the following statements are equivalent:

(i) there existsΦ ∈ S such that

Φ ≠ 0, then MΦ f ∈ Lp(Rn);

(ii) there exists F , a finite family of seminorms of S, such that MF f ∈ Lp(Rn);
(iii) f is a bounded X-valued distribution and Mntu ∈ Lp(Rn), where u(x, t) = f ∗ Pt(x).

Replacing the complex modulus by the norm in X, we see that the proof of Theorem 2.6 is the same as the scalar one, see
for example [9,15], and it consists on proving that the gauges ∥MΦ f ∥p , ∥MF f ∥ and ∥Mnt(f ∗ Pt)∥p, are all comparable with
constants that depend on p and n, only.

Definition 2.7. For p > 0 we define Hp
X(R

n) as the space of all f ∈ S′
X satisfying any of the equivalent conditions (i)–(iii) in

Theorem 2.6.

Proposition 2.2, Theorem 2.5 and (iii) of Theorem 2.6 imply the next result.

Theorem 2.8. Let p > 0 and u an X-valued harmonic function in Rn+1
+ . Then u ∈ h

p
X(R

n+1
+ ) if and only if u = f ∗ Pt for some f

in Hp
X(R

n).

3. Atomic decomposition

We start by giving an estimate of a distribution applied to a bump function in terms of a maximal function.

Lemma 3.1. Let N0 > 0 fixed and consider SFN0
= {φ ∈ S : ∥φ∥α,β ≤ 1,∀|α|, |β| < N0}. Let f be an X-valued distribution

and ζ a function in S with support in a ball B = B(x0, r), such that |∂αζ | ≤ r−n−|α| for all |α| ≤ N0, then

∥⟨f , ζ ⟩∥X ≤ CMFN0
f (x), ∀x ∈ B.

Proof. For each x ∈ B ⊆ Rn we put ζx(y) = rnζ (x − ry). Then

∂αζx(y) = (−1)|α|rn+|α|∂αζ (x − ry). (15)

The last quantity is not zero only if x − ry ∈ B, which implies that |y| ≤ 2.
Now |y| ≤ 2 and (15) imply that

|yβ∂αζx(y)| ≤ 2N0 rn+|α|
|∂αζ (x − ry)| ≤ 2N0 rn+|α|r−n−|α|

= 2N0 ,

for all multi indices such that |α|, |β| ≤ N0. It follows that ∥ζx∥α,β ≤ 2N0 and (1/2N0)ζx ∈ FN0 . By definition of ζx we have
(ζx)r(x − y) = ζ (y). Then

⟨f , ζ ⟩ = ⟨f , (ζx)r(x − ·)⟩ = ⟨f , τx̌ ((ζx)r)⟩ = f ∗ (ζx)r(x).

Therefore

∥⟨f , ζ ⟩∥X ≤ 2N0MFN0
f (x). �
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Next we will make a Calderón–Zygmund type decomposition for vector measures. Denote the grand maximal by Mf
instead of MF f , as the finite set F will be fixed.Φ will denote a function in C∞(Rn)with support in the unit ball in Rn and
satisfying


Rn Φ(x) dx ≠ 0.

We will say that the family of sets {Ak}k∈N has the bounded intersection property when there exists an integer number
M > 0 such that any point in Rn belongs at the most toM sets of the family.

Theorem 3.2 (Calderón–Zygmund Decomposition). Let µ ∈ MX(Rn) be absolutely continuous with respect to the Lebesgue
measure for every cube Q ⊆ Rn. Suppose that Mµ ∈ Lp(Rn) with p > 0. Then for any fixed constant A > 0 there exists a
decomposition µ = ω + ν, ν =


k νk, and a collection of cubes {Q ∗

k }k∈N, such that

1. {Q ∗

k } has the bounded intersection property, and
k

Q ∗

k = {x : Mµ(x) > A} .

2. Each measure νk is supported in Q ∗

k , νk(R
n) = 0 and satisfies

Rn
(MΦνk)

p
≤ C


Q∗
k

(Mµ)p. (16)

3.

∥ω∥V∞
X (Rn) ≤ CA. (17)

Remark 3.3. If 0 < p ≤ 1, then the measures ν andω of Theorem 3.2 belong to Hp
X. In fact, (16) and Theorem 2.6 imply that

νk ∈ Hp
X for all k ∈ N, and

∥ν∥
p
Hp

X
≤


k∈N

∥νk∥
p
Hp

X
≤ c


k∈N


Q∗
k

(Mµ)p ≤ cM

Ω

(Mµ)p.

Thus, ν ∈ Hp
X, and so does the measure ω = µ− ν. The measure ω satisfies the inequality

∥µ− ω∥
p
Hp

X
= ∥ν∥

p
Hp

X
≤ cM


Ω

(Mµ)p. (18)

Proof of Theorem 3.2. We define the open set Ω = {x ∈ Rn
: Mµ(x) > A}. Consider a Whitney decomposition for Ω ,

namely a family of closed cubes {Qk} such that (i)Ω =


i∈N Qk, (ii) Q ◦

k


Q ◦

j = ∅, for all i ≠ j, where Q ◦

k is the interior of
the cube Qk and (iii) dk ≤ d(Qk,Rn

\Ω) ≤ 4dk, dk is the diagonal of the cube Qk and d(Qk,Rn
\Ω) is the distance from cube

Qk to set F .
If we let 1 < ã < a∗ and Qk and Q ∗

k are the result of dilating Qk bya and a∗, we can choose a∗ close enough to 1 so that
i∈N Q ∗

k = Ω . The families {Q ∗

k } and {Qk} have the bounded intersection property. Let M be the biggest number of sets of
these families containing a single point in Rn. We have that Q ∗

k


Q ∗

i ≠ ∅ implies dk w di.
Now we consider the standard partition of the unity for the set Ω subordinated to the covering {Qk}: Let ϕ be smooth

function taking the value 1 in the cube of side length and centered at the origin and vanishing outside the cube with the
same center and side ã. We set ϕk(x) = ϕ


(x − xk)/(dk/

√
n)

, where xk is the center of Qk.

Now we define φk = ϕk/


j ϕj. The function φk satisfies
Rn
φk(x) dx w |Q ∗

k | w dnk . (19)

We putφk = φk/

φk, getting

 φk = 1 and

|∂βφk(x)| ≤ Cβd
−|β|

k . (20)

Let P be the space of polynomials in Rn and Pd be the finite-dimensional vector space of polynomials of degree ≤d in Rn.
We choose an integer d such that p > n/(n + d + 1). Let H be the Hilbert space L2(Q ∗

k ,
φk dx) and denote by Hd to Pd as a

subspace of H . The inner product (f , g)L2(Q∗
k )

is the integral

Q∗
k
f (x)g(x) dx, while (f , g)H is


Q∗
k
f (x)g(x)φk(x) dx.

Let {q1, q2, . . . , qN}be anorthonormal basis inHd, then (qi, qjφk)L2(Q∗
k )

= δij. For q ∈ P and x ∈ X the product q·x ∈ P⊗X
defines the application in S′

X given by

φ → ⟨q · x, φ⟩ = (q, φ)L2 · x.
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Define Pk : S′
X −→ Hd ⊗ X by

Pk(f ) =

N
i=1

qi⟨f , qiφk⟩. (21)

Pk is a projection on Hd ⊗ X and it satisfies ⟨(µ− Pkµ), qφk⟩ = 0 for all q ∈ Hd.
Now we define hk = Pkµ and the block measure

dνk = φk dµ− hkφk dx.

The measures νk satisfy the moment condition ⟨νk, q⟩ =

Qk

q(x) dνk(x) = 0 for every polynomial q in Hd.
To prove (16) we need the bounds

MΦνk(x) ≤ cMµ(x), x ∈ Q ∗

k , (22)

MΦνk(x) ≤ cA
dn+d+1
k

|x − xk|n+d+1
, x ∉ Q ∗

k . (23)

In fact, inequalities (22) and (23) imply that
(MΦνk)

p
=


Q∗
k

+


(Q∗

k )
C


(MΦνk)

p

≤


Q∗
k

(Mµ)p +


(Q∗

k )
C


cA

dn+d+1
k

|x − xk|n+d+1

p

dx.

Calculating the last integral

(cA)pdp(n+d+1)
k


(Q∗

k )
C

1
|x − xk|p(n+d+1)

dx = cnApdp(n+d+1)
k


∞

dk

1
rp(n+d+1)

rn−1 dr

= cn,pApdp(n+d+1)
k dn−p(n+d+1)

k

= cn,p,a∗Ap
|Q ∗

k |

≤ cn,p,a∗

Q∗
k

(Mµ)p,

since p > n/(n + d + 1) and Mµ(x) > A when x ∈ Q ∗

k ⊆ Ω . Hence (16) follows.
Now we show (22) and (23). First we claim that the polynomial hk satisfies

∥hk(x)φk(x)∥X ≤ cdA (24)

∥hk(x)φk(x)∥X ≤ cdMµ(x) ∀x ∈ Q ∗

k . (25)

From the fact that

sup
x∈Q∗

k

|∂βq(x)| ≤ Aβd
−|β|

k ∥q∥H , q ∈ Pd, (26)

(see [15, p. 104]), we have in particular that |∂βqi| ≤ Aβ,Nd
−|β|

k for |β| ≥ 0 and i = 1, 2, . . . ,N . Inequality (20) and the
Leibniz formula give us |∂βqiφk(x)| ≤ Aβd

−n−|β|

k . We apply Lemma 3.1 for the function qiφk and r = 5dk to obtain that⟨µ, qiφk⟩


X ≤ cA and
⟨µ, qiφk⟩


X ≤ cMµ(z) for z ∈ Q ∗

k .
Then we have

∥hk(x)φk(x)∥X =




N
i=1

qi(x)⟨µ, qiφk⟩


φk(x)


X

≤

N
i=1

|qi(x)||φk(x)|
⟨µ, qiφk⟩


X .

When x ∉ Q ∗

k every term vanishes in the last sum. If x ∈ Q ∗

k , the function φk is bounded by 1 and by (26) the polynomials qi
are uniformly bounded by a constant C , then

∥hk(x)φk(x)∥X ≤ cdA,

proving the inequality (24).
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In similar way we prove (25):

∥hk(x)φk(x)∥X ≤

N
i=1

CMµ(x) = cdMµ(x), x ∈ Q ∗

k .

Now we are ready for proving inequalities (22) and (23): We have

MΦνk(x) ≤ MΦ(φk dµ)(x)+ MΦ(hkφk)(x). (27)

Let us analyze the first term. When x ∈ Q ∗

k the convolution φk dµ ∗Φt(x) is given by ⟨µ, φkΦt(x− ·)⟩. To apply Lemma 3.1,
we set

ζ (y) = φk(y)Φt(x − y). (28)

Then by the Leibniz rule,

|∂βζ (y)| ≤


cβ,φk,Φ t

−n−|β|, when t ≤ dk
cβ,φk,Φd

−n−|β|

k , when t > dk.

Also

suppζ = suppφkΦt(x − ·) ⊂ Q ∗

k


B(x, r),

where B(x, r) is the ball centered at x and radius r with r = t if t ≤ dk while t = 2dk if t > dk. Therefore for any t > 0 we
have

∥φk dµ ∗ Φt(x)∥X = ∥⟨µ, ζ ⟩∥X ≤ cMµ(x).

Hence

MΦ(φk dµ)(x) ≤ cMµ(x), x ∈ Q ∗

k . (29)

To estimateMΦ(hkφk)(x), we have by (25)

∥hkφk ∗ Φt(x)∥X ≤


∥hk(y)φk(y)∥X Φt(x − y) dy ≤ cdMµ(x), x ∈ Q ∗

k .

We take the supremum for t > 0 and we get

MΦ(hkφk)(x) ≤ cMµ(x), x ∈ Q ∗

k . (30)

From (27), (29) and (30) inequality (22) follows. By the moment condition on the measure νk we have

νk ∗ Φt(x) = ⟨νk,Φt(x − ·)⟩ = ⟨νk,Φt(x − ·)− q⟩,

where q is the Taylor’s polynomial of degree d for the function y → Φt(x − y) at y = xk. Then

νk ∗ Φt(x) = ⟨φk dµ,Φt(x − ·)− q⟩ − ⟨hkφk,Φt(x − ·)− q⟩,

thus

MΦνk(x) ≤ sup
t>0

⟨φk dµ,Φt(x − ·)− q⟩ + sup
t>0

⟨hkφk,Φt(x − ·)− q⟩ = I1 + I2.

Then we have for any β ∈ Nn that

|∂β [Φt(x − y)− q(y)]| ≤ Aβ
dd+1
k

|x − xk|n+d+1
d−|β|

k , (31)

thus, if we define the function

ζ (y) =
|x − xk|n+d+1

dn+d+1
k

φk(y)[Φt(x − y)− q(y)],

we get |∂βζ | ≤ Aβd
−n−|β|

k . We apply Lemma 3.1 to µ and ζ obtaining ∥⟨µ, ζ ⟩∥X ≤ cA. Taking the supremum on t > 0 we
get

I1 ≤ cA
dn+d+1
k

|x − xk|n+d+1
. (32)
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To estimate I2 we use (31) with β = 0, then

∥⟨hkφk,Φt(x − ·)− q⟩∥X ≤ ∥hk∥X
dd+1
k

|x − xk|n+d+1


Q∗
k

dy

= cA
dn+d+1
k

|x − xk|n+d+1
.

Taking the supremum on t > 0 we get

I2 ≤ cA
dn+d+1
k

|x − xk|n+d+1
, (33)

and the proof of (23) is complete.
Now we can define the bad measure

ν =


k∈N

νk.

We define the good measure by

dω(x) =

dµ(x), x ∈ Rn
\Ω

k

hk(x)φk(x) dx, x ∈ Ω.

It is clear that ω + ν = µ. Finally we prove that µ ∈ V∞
X (R

n). For E ⊆ Ω , we have

∥ω(E)∥X ≤


E


k

∥hkφk∥X


dx ≤ cdAM|E|.

If E ⊆ Rn
\Ω , we haveω(E) = µ(E), so we will see that ∥µ(E)∥X is bounded by cA|E|. In fact, consider a functional e∗

∈ X∗,
and let µe∗ be the composition e∗

◦ µ. By the assumption on µ, there exists f ∈ L1loc(R
n) such that dµe∗(x) = f (x) dx

on every cube Q . On the other hand, we have |⟨e∗, µ(E)⟩| =


E limt→0 fe∗ ∗ Φt(x) dx
. Fatou’s lemma implies that

|⟨e∗, µ(E)⟩| ≤ limt→0


E |fe∗ ∗ Φt(x)| dx. Also, fe∗ ∗ Φt(x) = ⟨e∗, µ ∗ Φt(x)⟩. Hence

∥µ(E)∥X ≤ sup
∥e∗∥X∗≤1

lim
t→0


E
|fe∗ ∗ Φt(x)| dx

= sup
∥e∗∥X∗≤1

lim
t→0


E
|⟨e∗, µ ∗ Φt(x)⟩| dx

≤


E
Mµ(x) dx

≤ cA|E|.

The proof of Theorem 3.2 is complete now. �

Observe that in Theorem 3.2 we can replace the measure µ by a distribution f ∈ Hp
X and let νk = (f − hk)φk, where the

polynomials hk = Pkf . We also have in this case that (16) holds. We define as before ν =


k νk and ω = f − ν with next
result.

Theorem 3.4. Let f be a distribution such that Mf ∈ Lp(Rn). Then there exists a family of cubes {Q ∗

k }, and a decomposition f =

ω+ ν with ν =

νk, where νk are the distributions with compact support such that the points (1) and (2) of Theorem 3.2 hold

with ⟨νk, 1⟩ = 0 and

MΦω(x) ≤ cMf (x)χΩC (x)+ cA

k

dn+1
k

(dk + |x − xk|)n+1
. (34)

Proof. As before we define ω = f − ν. It remains to prove (34). Assume first that x ∉ Ω , then we have that

dn+1
k

|x − xk|n+1
≤ c

dn+1
k

(dk + |x − xk|)n+1
.

We have thatMΦω ≤ MΦ f +


k∈N MΦνk. ButMΦ f ≤ cMf , and this together with (23) with d = 0 implies that

MΦνk(x) ≤ cA
dn+1
k

dk + |x − xk|n+1
, (35)
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proving (34) when x ∉ Ω . Now assume that x ∈ Ω and letm such that x ∈ Q ∗
m. Then

ω = f −


k∈N

νk = f −


N

νk −


F

νk,

where k ∈ N if and only if Q ∗

k ∩ Q ∗
m ≠ ∅ and F = N − N . Recall that the set N that depends on m has finite cardinality

bounded by a fixed numberM . When k ∈ F we have that cdk ≤ |x − xk|; then as before
F

MΦνk(x) ≤ cA

F

dn+1
k

(dk + |x − xk|)n+1
.

If k ∈ N we can split

f −


N

νk = f −


N

φkf −


N

qkφk.

For the last sum we know that ∥qkφk∥X ≤ cA and 1 ≤ cndn+1
m /(dm + |x − xm|)n+1. So we estimate

N

MΦ(qkφk)(x) ≤


N

cA ≤ cAM ≤ cn,MA
dn+1
m

(dm + |x − xm|)n+1
.

LetΦ the test function supported in the ball. Let us analyze the convolution ofΦt with f −


N φkf . Consider a constant c0
such that c0dm = sup{r > 0 : B(x, r) ⊂ Q ∗

m}. Then, for t ≤ c0dm we have

f −


N φkf


∗ Φt(x) = 0 due to the fact that

1 −


c φk = 0 in Q ∗
m and the support ofΦt(x − ·) is contained in B(x, t) ⊂ Q ∗

m. For t > c0dm observe that
f −


N

φkf


∗ Φt(x) =


f ,


1 −


N

φk


Φt(x − ·)


.

We consider the function ψ =

1 −


N φk


Φt(x − ·). Notice that ∂β


N φk =


N d−|β|

k ∂βφ, and since the quantities dk
and dm are comparable when Q ∗

k


Q ∗
m ≠ ∅, then |∂β


N φk| ≤ AβMd−|β|

m . We also have that |∂βΦt | ≤ Aβ t−n−|β|
|∂βΦ|, but

t > c0dm; hence |∂βφ| ≤ Aβ,Md−n−|β|

m . Applying Lemma 3.1 for the ball B = B(x, ρ) and ρ = cdm with a constant c large
enough, so that B


ΩC

≠ ∅, we obtain

|⟨f , ψ⟩| ≤ Mf (y) ≤ cA,

for y ∈ B

ΩC . Hence

sup
t>0



f −


N

φkf


∗ Φt(x)


X

≤ cA ≤ cA
dn+1
m

(dm + |x − xm|)n+1
.

Finally

MΦω ≤ MΦ


f −


N

φkf


+


N

MΦ(qkφk)+


F

MΦνk

≤ (c + cM)A
dn+1
m

(dm + |x − xm|)n+1
+ cA


k∈F

dn+1
k

(dk + |x − xk|)n+1
,

proving (34) when x ∈ Ω . �

Corollary 3.5. The distribution ω of Theorem 3.4 belongs to the space H1
X(R

n).

Proof. We integrate (34),
Rn

MΦω(x) dx ≤ c


Rn
Mf (x)χΩC (x) dx + cA


Rn


k∈N

dn+1
k

(dk + |x − xk|)n+1
dx

≤ A1−p

ΩC

Mf p(x) dx + cA|Ω| < ∞

and Theorem 2.6 implies ω ∈ H1
X. �

Theorem 3.6. Let p < 1, then the space V 1
X(R

n)


Hp
X(R

n) is dense in Hp
X(R

n).
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Proof. Let f ∈ Hp
X. If we set Ak = k for every k ∈ N, then by Theorem 3.4 there exist νk and ωk distributions in Hp

X such that
f = ωk + νk and ωk → f as k → ∞ in Hp

X by (18). Then Corollary 3.5 implies that {ωk}k∈N ⊆ V 1
X


Hp
X. �

Definition 3.7. Let p ≤ 1. We say that a Borel X-valued measure µ is a p-atom in X if it satisfies

1. supp µ ⊂ B, where B is a ball.
2. ∥µ∥V∞

X
≤ 1/|B|

1
p .

3. µ satisfies the moment condition


Rn xα dµ(x) = 0, for all |α| ≤ n [1/p − 1].

With the same proof as in the scalar case we have the following.

Proposition 3.8. Let p ≤ 1, then

(a) if µ is a p-atom in X, then µ belongs to Hp
X(R

n). Moreover, evaluated at µ, any of the gauges defining Hp
X(R

n) according to
Theorem 2.6 is bounded by a constant independent of µ.

(b) If {µj} is countable family of p-atoms in X and {λj} a sequence of complex numbers in ℓp(N), then the series

µ =


j∈N

λjµj (36)

belongs to Hp
X(R

n).

Now we will prove the converse of this proposition.

Proposition 3.9. For µ ∈ V 1
X


Hp
X, p < 1, there exist a sequence {λj}j∈N in ℓp and a family {µj}j∈N of p-atoms such that

µ =


j∈N

λjµj,

converging in S′

X and
|λi|

p
≤ C∥µ∥

p
Hp

X
.

Proof. For each j ∈ Z Theorem 3.2 we decompose µ = ω(j) + ν(j), where ν(j) =


k∈N ν
(j)
k , andΩ(j)

= {x ∈ Rn
: Mµ(x) >

2j
} =


k∈N(Q

(j)
k )

∗. Notice thatΩ(j+1)
⊂ Ω(j). We know thatω(j) → µ inHp

X when j → ∞, also
ω(j)V∞

X
≤ c2j, soω(j) → 0

when j → −∞; therefore

µ = lim
N→∞

N
j=−∞

ω(j+1)
− ω(j). (37)

The terms ω(j+1)
− ω(j) satisfy

ω(j+1)
− ω(j)


V∞

X
≤ c2j and supp(ω(j+1)

− ω(j)) ⊆ Ω(j).

Recall that the block measures are given by dν(j)k = φ
(j)
k (dµ− h(j)k dx) and h(j)k = P (j)k µ. We now define the polynomials

Hk,l with degree d at the most as

Hk,l = P (j+1)
l [φ

(j)
k (dµ− h(j+1)

l dx)]. (38)

The polynomials Hk,l satisfy

(i) Hk,l ≠ 0 when (Q (j)
k )

∗

(Q (j+1)

k )∗ ≠ ∅.
To see this, notice that Hk,l =

N
i=1⟨φ

(j)
k (dµ− h(j+1)

l dx), qiφ(j+1)
l ⟩qi.

(ii) diam[Q (j)
k ] ≥ c · diam[Q (j+1)

l ] when (Q (j)
k )

∗

(Q (j+1)

l )∗ ≠ ∅.

(iii)
Hk,l(x)φ

(j+1)
l (x)


X

≤ c2j.

To see this we write Hk,l =
N

i=1⟨φ
(j)
k (dµ− h(j+1)

l dx), qiφ(j+1)
l ⟩qi, where the polynomials q1, q2, . . . , qN are a basis

of the Hilbert space L2((Q (j+1)
l )∗,φ(j+1)

l dx).

Now we estimate
⟨φ(j)k (dµ− h(j+1)

l dx), qiφ(j+1)
l ⟩


X
:

Let ζ = φ
(j)
k qiφ(j+1)

l . Since for some constants Aβ we have |∂βqi(x)| ≤ Aβ(d
(j+1)
l )−|β|, |∂βφ(j+1)

l (x)| ≤ Aβ
(d(j+1)

l )−n−|β|, |∂βφ
(j)
k (x)| ≤ Aβ(d

(j)
k )

−|β|
≤ c(d(j+1)

l )−|β|, (see (26)) and by (ii), we get⟨φ(j)k dµ, qiφ(j+1)
l ⟩


X

≤ c2j+1. (39)
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To estimate ⟨h(j+1)
l φ

(j)
k dx, qiφ(j+1)

l ⟩, we have⟨h(j+1)
l φ

(j)
k dx, qiφ(j+1)

l ⟩


X

≤

N
m=1

|⟨qmφ
(j)
k dx, qiφ(j+1)

l ⟩|

⟨µ, qmφ(j+1)
l ⟩


X
,

but
⟨µ, qmφ(j+1)

l ⟩


X

≤ c2j+1 for m = 1, 2, . . . ,N , and

N
m=1

|⟨qmφ
(j)
k dx, qiφ(j+1)

l ⟩| = |φ
(j)
k |

N
m=1

|⟨qm dx, qiφ(j+1)
l ⟩| = |φ

(j)
k |

N
m=1

δm,i ≤ 1.

We conclude that⟨h(j+1)
l φ

(j)
k dx, qiφ(j+1)

l ⟩


X

≤ c2j+1. (40)

Inequalities (39) and (40) imply (iii).
(iv)


k∈N Hk,l = 0. In fact,

k∈N

Hk,l = P (j+1)
l [(µ− h(j+1)

l )χΩ(j) ] = P (j+1)
l [(µ− P (j+1)

l µ)] = 0.

Next we will construct the atoms. Notice that

ω(j+1)
− ω(j) = ν(j) − ν(j+1)

=


k∈N

φj,k(dµ− h(j)k dx)−


l∈N

φ
(j+1)
l (dµ− h(j+1)

l dx).

Then we let

ω(j+1)
− ω(j) =


k∈N

Aj,k, (41)

where the measures Aj,k are defined as

dAj,k = φ
(j)
k (dµ− h(j)k dx)−


l∈N

φ
(j+1)
l φ

(j)
k (dµ− h(j+1)

l dx)+


l∈N

Hk,lφ
(j+1)
l dx. (42)

Eq. (41) holds since


k∈N φ
(j)
k = 1 in supp{φ(j+1)

l }. We have the following:

1. The measures Aj,k have support in a ball B(j)k that contains the cube (Q (j)
k )

∗ and all cubes (Q (j+1)
l )∗ that intersect (Q (j)

k )
∗.

Moreover, by (ii), we may assume that |B(j)k | = c|Q (j)
k |

2. The measures Aj,k are bounded by c2j. In fact,

φ
(j)
k µ−


l∈N

φ
(j+1)
l φ

(j)
k µ


(E)


X

=


E
χΩC

j+1
(x)φ(j)k (x) dµ


X

≤ c2j
|E|,

due to (17). Moreover(φ(j)k h(j)k dx)(E)


X
≤


E

h(j)k (x)φ(j)k (x)X
dx ≤ c2j

|E|,

and 


l∈N

φ
(j+1)
l φ

(j)
k h(j+1)

l dx


(E)


X

≤


E


φ
(j)
k (x)


l∈N

h(j+1)
l (x)φ(j+1)

l (x)


X


dx

≤


E
φ
(j)
k (x)c2

j+1M dx

≤ c2j
|E|,
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since every point x belongs toM cubes (Q (j+1)
l )∗ at the most. Finally


l∈N

Hk,lφ
(j+1)
l dx


(E)


X

≤


E


l∈N

Hk,l(x)φ
(j+1)
l (x)


X

dx

≤


E
c2j+1M dx

≤ c2j
|E|.

3. The Aj,k satisfy the moment condition


Rn xα dAj,k(x), for all |α| ≤ n [1/p − 1]. In fact, dν(j)k = φ
(j)
k (dµ− h(j)k dx) satisfies

this property. Also

−


l∈N

φ
(j+1)
l φ

(j)
k (dµ− h(j)k dx)+


l∈N

Hk,lφ
(j+1)
l dx = −


l∈N

φ
(j+1)
l [φ

(j)
k (dµ− h(j+1)

l dx)− Hk,l dx],

and the terms in the right hand side of this equation are of the form φ
(j+1)
l (µ − P (j+1)

l µ) which satisfy the moment
condition.

Now define

λ
(j)
k = 2j

|B(j)k |
1
p

aj,k =
1

λ
(j)
k

Aj,k.

Notice that the measures aj,k have support contained in Bj,k,

aj,kV∞
X

=

Aj,k

V∞

X

λj,k
≤

2j

2j|Bj,k|
1
p

= |Bj,k|
−

1
p ,

and they satisfy the required moment conditions. By (37) and (41), we have

µ =


j∈Z
k∈N

λj,kaj,k.

Finally
j∈Z
k∈N

|λj,k|
p

= c

j∈Z
k∈N

2jp
|Q ∗

j,k| ≤ cM

j∈Z

2jp
|Ω(j)

|

≤ cM,p

j∈Z

 2j

2j−1
λp−1

|{x ∈ Rn
: Mµ(x) > λ}| dλ

= cM,p


Mµp

= cM,p ∥µ∥
p
Hp

X
. �

Now we are ready to prove the existence of atomic decompositions for any element in Hp
X.

Theorem 3.10. Let p ≤ 1, then for any f ∈ Hp
X there exist a sequence {λj} in ℓp and a sequence of p-atoms {aj} such that

µ =


j∈N

λjaj,

converging in S′

X and
|λi|

p
≤ C∥f ∥p

Hp
X
.

Proof. Let f ∈ Hp
X; then by Theorem 3.6 there exists a sequence {µj}j∈N of measures in V 1

X


Hp
X such thatµj → µ in Hp

X as
j → ∞ and

µj+1 − µj
p

Hp
X

≤ 2−j ∥µ∥
p
Hp

X
. Letting µ0 = 0 we have

µ =

∞
j=0

µj+1 − µj.
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By Proposition 3.9, for each j ∈ N we have an atomic decomposition of measure µj+1 − µj ∈ VX


Hp
X,

µj+1 − µj =


k∈N

λj,kaj,k,

with 
k∈N

|λj,k|
p

≤ C
µj+1 − µj

p
Hp

X
.

Then

µ =


j,k∈N

λj,kaj,k, (43)

and 
j,k∈N

|λj,k|
p

≤ C ∥µ∥
p
Hp

X
. �

Contrasting with the scalar case, we should not expect in vector-valued Hardy spaces to have atomic decompositions
consisting of integrable functions. Recall that a Banach space X has the Radon–Nikodým property if every measure µ ∈

V 1
X(Q ) has a density in L1X(Q ) for some cube Q (and then for every cube).

Proposition 3.11. All the elements of H1
X are functions (have a density in L1X (R

n)) if and only if X has the Radon–Nikodým
property.

Proof. Suppose that every element of H1
X(R

n) has a density. Let Q be a cube in Rn and ν a measure in V 1
X(Q ). Define the

measure µ = ν − νQ dx, where νQ = ν(Q )/|Q |. Then µ is a multiple of a 1-atom, and thus it belongs to H1
X(R

n). Our
assumption implies that µ has a density so that µ has a density too. From this it follows that X has the Radon–Nikodým
property. The other direction is clear if we remember that every 1-atom belongs to V 1

X(R
n). �
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