期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:446
Damped wave equation with a critical nonlinearity in higher space dimensions
Article
Hayashi, Nakao1  Naumkin, Pavel I.2 
[1] Osaka Univ, Grad Sch Sci, Dept Math, Osaka 5600043, Japan
[2] UNAM, Inst Matemat, Campus Morelia,AP 61-3 Xangari, Morelia 58089, Michoacan, Mexico
关键词: Damped wave equation;    Critical nonlinearity;    Large time asymptotics;    Higher space dimension;   
DOI  :  10.1016/j.jmaa.2016.09.005
来源: Elsevier
PDF
【 摘 要 】

We study the Cauchy problem for nonlinear damped wave equations with a critical defocusing power nonlinearity vertical bar u vertical bar(2/n) u, where n denotes the space dimension. For n = 1,2,3, global in time existence of small solutions was shown in [4]. In this paper, we generalize the results to any spatial dimension via the method of decomposition of the equation into the high and low frequency components under the assumption that the initial data are small and decay rapidly at infinity. Furthermore we present a sharp time decay estimate of solutions with a logarithmic correction. (C) 2016 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2016_09_005.pdf 1088KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次