JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:459 |
Spectrality of certain Moran measures with three-element digit sets | |
Article | |
Wang, Zhi-Yong1  Dong, Xin-Han1  Liu, Zong-Sheng1  | |
[1] Hunan Normal Univ, Coll Math & Comp Sci, Minist Educ China, Key Lab High Performance Comp & Stochast Informat, Changsha 410081, Hunan, Peoples R China | |
关键词: Moran measures; Spectral measure; Spectrum; Fourier transform; | |
DOI : 10.1016/j.jmaa.2017.11.006 | |
来源: Elsevier | |
【 摘 要 】
Let D-n = {0, a(n), b(n)} = {0,1, 2}(mod 3), p(n) is an element of 3Z(+), n >= 1, satisfy sup(n >= 1) max{vertical bar a(n)vertical bar, vertical bar b(n)vertical bar}/p(n) < infinity. It is well-known that there exists a unique Borel probability measure mu{p(n) }, {D-n} generated by the following infinite convolution product mu{p(n) }, {D-n} = delta(p1-1D1)* delta((p1p2)-1 D2) *... in the weak convergence. In this paper, we give some conditions to ensure that there exists a discrete set Lambda such that the exponential function system {e(2 pi i lambda x)}lambda is an element of Lambda forms an orthonormal basis for L-2(mu{p(n) }, {D-n}). (C) 2017 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2017_11_006.pdf | 284KB | download |