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SPECTRALITY OF CERTAIN MORAN MEASURES WITH
THREE-ELEMENT DIGIT SETS

ZHI-YONG WANG, XIN-HAN DONG∗, AND ZONG-SHENG LIU

Abstract. LetDn = {0, an, bn} = {0, 1, 2}(mod 3), pn ∈ 3Z+, n ≥ 1, satisfy supn≥1
max{|an |,|bn |}

pn

< ∞. It is well-known that there exists a unique Borel probability measure μ{pn},{Dn} gen-

erated by the following infinite convolution product

μ{pn},{Dn} = δp−1
1
D1
∗ δ(p1 p2)−1D2

∗ · · ·
in the weak convergence. In this paper, we give some conditions to ensure that there

exists a discrete set Λ such that the exponential function system {e2πiλx}λ∈Λ forms an

orthonormal basis for L2(μ{pn},{Dn}).
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1. Introduction

Let μ be a probability measure with compact support on Rn. We call it a spectral

measure if there exists a discrete set Λ ⊂ Rn such that EΛ := {e2πi〈ξ,λ〉 : λ ∈ Λ} forms an

orthonormal basis for L2(μ). The set Λ is then called a spectrum for μ. The existence of

spectrum for μ was initiated by Fuglede in his seminal paper [11]. The first example of

a singular, non-atomic, spectral measure was constructed by Jorgensen and Pedersen in

[14]. This surprising discovery received a lot of attention. The spectral property of fractal

measures becomes an active research area, and more spectral fractal measures were found

in [15, 19] and [1–3, 5, 9, 12, 13, 17]. The spectral property, Fourier transform [16, 21, 22]

and Cauchy transform [6–8,18] of fractal measure form the main topics in the analysis on

fractals.
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In [19] and [1,4,13], the authors constructed some classes of Moran spectral measures.

Motivated by their work, we focus on certain Moran measures with three-element digit

sets. Before the statement of the main results, we first give some definitions and notations.

Let

Dn = {0, an, bn} = {0, 1, 2}(mod 3) and pn ∈ 3Z+ (1.1)

be a digit set in Z with |an| < |bn| and an integer for all n ≥ 1, respectively. In this paper,

we always assume that

c := lim sup
n→∞

|an|
pn
< ∞, d := lim sup

n→∞
|bn|
pn
< ∞. (1.2)

Write Pn = p1 p2 · · · pn. Under the assumptions of (1.1) and (1.2), then associated to the

sequence {pn,Dn}, there exists a Borel probability measure μ{pn},{Dn}, which is defined by

the following infinite convolutions of finite measures:

μ{pn},{Dn} = δP−1
1
D1
∗ δP−1

2
D2
∗ · · · (1.3)

in the weak convergence, where ∗ is the convolution sign, δE =
1

#E

∑
e∈E
δe, #E is the car-

dinality of a set E and δe is the Dirac measure at the point e ∈ R. It is known that the

support of μ{pn},{Dn} is the Moran set:

T ({pn}, {Dn}) =
∞∑

n=1

P−1
n Dn.

Strichartz [19] first studied the spectrality of μ{Rn},{Bj} where expanding matrices {Rj}∞j=1

and digit sets {Bj}∞j=1 satisfy #{R1,R2, · · · }, #{B1, B2, · · · } < ∞. In [5], Ding considered

the case pn and Dn defined by (1.1) such that Dn ⊂ N, #{an, bn : n ≥ 1} < ∞ and

gcd(an, bn) = 1 for n ≥ 1. In this paper, we will study the spectrality of μ{pn},{Dn} defined

by (1.3) without the boundedness assumptions : #{an, bn : n ≥ 1} < ∞.

Theorem 1.1. Let μ{pn},{Dn} be defined by (1.3) where pn and Dn satisfy (1.1)-(1.2). Sup-
pose that one of the following conditions holds:

(a) lim inf
n→∞

|an |
pn
< min{ 2

3
, 2

3c };
(b) 1 ≤ an < bn for all n ≥ 1, and lim inf

n→∞
bn
pn
< min{1, 1

d }.
Then μ{pn},{Dn} is a spectral measure with spectrum Λ =

⋃∞
n=1

(∑n
i=1 Pi{0, ui/3, vi/3}) for

some choice {ui}, {vi} satisfying ui, vi ∈ Z \ 3Z and ui � vi(mod 3) for all i, where Pi =∏i
k=1 pk.

From Theorem 1.1, we have the following corollary.

Corollary 1.2. Let μ{pn},{Dn} be defined by (1.3) where pn and Dn satisfy (1.1)-(1.2). If
c < 2/3 (or d < 1 and 1 ≤ an < bn ), then μ{pn},{Dn} is a spectral measure.
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Remark 1.3. Ding [5] proved that μ{pn},{Dn} is a spectral measure if pn, Dn are defined
by (1.1) with an, bn ≥ 1, gcd(an, bn) = 1 for n ≥ 1, and supn≥1 max{an, bn} < ∞. Its proof
is divided into two cases: (i) #{pn : n ≥ 1} < ∞; (ii) #{pn : n ≥ 1} = ∞. In case (i), it
follows from [19, Theorem 2.8] that μ{pn},{Dn} is a spectral measure; for case (ii), we have
lim inf

n→∞
an
pn
= 0 as {an} is bounded, which is a special case of Theorem 1.1(a), and hence

μ{pn},{Dn} is a spectral measure. Obviously, our theorem allows supn≥1 max{an, bn} = ∞
and gcd(an, bn) � 1 for n ≥ 1.

In the following, we construct an example to illustrate that the conditions (a) and (b) in

Theorem 1.1 are not redundant.

Remark 1.4. Let D1 = {0, 1, 2}, Dm = {0, 2, 4} for m ≥ 2, and let pn = 3 for n ≥ 1.
Then c = lim

n→∞
an
pn
= 2

3
and d = lim

n→∞
bn
pn
= 4

3
. Hence {pn} and {Dn} satisfy (1.1)-(1.2), but

do not satisfy the condition (a) or (b) in Theorem 1.1. However, μ{pn},{Dn} is not a spectral
measure. This follows from [10, Corollary1.4] and

μ{pn},{Dn} = δ3−1D1
∗ 3

2
L|[0,2/3] =

1

2
L|[0,1/3]∪[1,4/3] +L|[1/3,1]

as δ3−2D2
∗ δ3−3D3

∗ · · · = 3
2
L|[0,2/3].

The organization of the paper is as follows. In the next section, we summarize some of

the definitions and preliminary results on Fourier transform of μ{pn},{Dn}. In Section 3, we

prove Theorem 1.1.

2. Preliminaries

Let μ be a probability measure with compact support on R. The Fourier transform of μ

is defined by μ̂(ξ) =
∫

e−2πiξxdμ(x). Then for our case, we have

μ̂{pn},{Dn}(ξ) =
∞∏

n=1

Man,bn(P
−1
n ξ), (2.1)

where

Man,bn(ξ) =
1

3
(1 + e−2πianξ + e−2πibnξ) (2.2)

is known as the mask polynomial of Dn. We use Zh := {ξ : h(ξ) = 0} to denote the zero

set of the function h. It is easy to see from {an, bn} = {1, 2}(mod 3) and (2.1)-(2.2) that

ZMai , bi
=

1

3 gcd(ai, bi)
(Z \ 3Z) and Zμ̂{pn}, {Dn} =

∞⋃

i=1

Pi

3 gcd(ai, bi)
(Z \ 3Z). (2.3)
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We say that Λ is an orthogonal set for μ if EΛ is an orthonormal family for L2(μ). It

is easy to show that Λ is an orthogonal set for μ if and only if μ̂(λi − λ j) = 0 for any

λi � λ j ∈ Λ, which is equivalent to

(Λ − Λ) \ {0} ⊆ Zμ̂. (2.4)

Let QΛ(ξ) =
∑
λ∈Λ |μ̂(ξ + λ)|2. Using the Parseval identity, we have the following basic

criterion for orthogonality of EΛ in L2(μ).

Proposition 2.1. [14] Let μ be a probability measure in Rn with compact support, and
let Λ ⊂ Rn be a countable subset. Then

(i) Λ is an orthonormal set for μ if and only if QΛ(ξ) ≤ 1 for ξ ∈ Rn; and
(ii) Λ is a spectrum for μ if and only if QΛ(ξ) ≡ 1 for ξ ∈ Rn.

In this paper, we write

μn = δP−1
1
D1
∗ · · · ∗ δP−1

n Dn
and μ>n = δP−1

n+1
Dn+1
∗ δP−1

n+2
Dn+2
∗ · · · . (2.5)

Then μ{pn},{Dn} = μn ∗ μ>n. We say u ∈ (Z \ 3Z)N if u = {ui}∞i=1 with all ui ∈ Z \ 3Z. For any

u, v ∈ (Z \ 3Z)N with all ui � vi(mod 3), we write

Λu,v
n :=

n∑

i=1

Pi{0, ui/3, vi/3} and Λu,v :=

∞⋃

n=1

Λu,v
n . (2.6)

The following lemma is used to illustrate that Λu,v is an orthogonal set for μ{pn},{Dn}.

Lemma 2.2. Let pn and Dn be defined by (1.1). Then the set Λu,v
k is a spectrum for μk,

and Λu,v is an orthogonal set for μ{pn},{Dn} for any u, v ∈ (Z \ 3Z)N with ui � vi(mod 3) for
all i.

Proof. From (2.3) and (2.4), it is easy to check that Λu,v
k and Λu,v are orthogonal sets for

μk and μ{pn},{Dn}, respectively. Moreover, Λu,v
k is a spectrum for μk because the dimension

of the space L2(μk) is 3k, which is the cardinality of the set Λu,v
k . �

3. Proof of Theorem 1.1

We first state a proposition, which is weaker than Theorem 1.1. Indeed, we only use

“ sup ” instead of “ lim sup ” in the hypotheses of Theorem 1.1.

Proposition 3.1. Let μ{pn}, {Dn} be defined by (1.3) where pn and Dn satisfy (1.1) and c̃ :=

supn≥1
|an |
pn
≤ d̃ := supn≥1

|bn |
pn
< ∞. In addition, suppose that one of the following conditions

holds: (i) lim inf
n→∞

|an |
pn
< min{2

3
, 2

3c̃ }; (ii) 0 < an < bn for all n ≥ 1 and lim inf
n→∞

bn
pn
< min{1, 1

d̃ }.
Then μ{pn},{Dn} is a spectral measure.
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To prove Proposition 3.1, we need the following lemmas. Noting that pn ∈ 3Z+, we

have Pn = p1 p2 · · · pn ≥ 3n, which will be used many times in the rest of this paper. We

use the notation �x� to denote the minimum integer greater than or equal to x ∈ R, i.e.,

�x� := min{n ∈ Z : n ≥ x}, and define a positive integer

N0 := �3 + log(max{1, d̃})/log 3�. (3.1)

Lemma 3.2. With the hypotheses of Proposition 3.1(i), let μ>n be defined by (2.5) for
n ≥ 1 and u = −v = {1}∞i=1. Then there exist an increasing positive integer sequence
{nk}∞k=1 with nk − nk−1 ≥ N0, and a constant α > 0 such that

(i) |μ̂>nk(ξ + λ)| ≥ α for all λ ∈ Λu,v
nk , k ≥ 1 and |ξ| ≤ 1;

(ii) |μ̂>nk(ξ + λ)| ≥ exp
(
−9N0+1−nk+nk−1

)
for all λ ∈ Λu,v

nk−1
, k > 1 and |ξ| ≤ 1.

Proof. For fixed r ∈ ( lim inf
n→∞

|an |
pn
, min{ 2

3
, 2

3c̃ }
)
, we choose a positive integer l such that

3l + 2

2 · 3l < min
{ 1

3r
,

1

3c̃r
}
. (3.2)

We can find an increasing sequence {nk}∞k=1 such that

nk ≥ l, nk+1 − nk ≥ N0,
|ank+1|
pnk+1

≤ r, ∀ k ≥ 1. (3.3)

For convenience, we write

J j(ξ + λ) := |Ma j,b j(P
−1
j (ξ + λ))| = 1

3

∣∣∣1 + e−2πiP−1
j a j(ξ+λ) + e−2πiP−1

j b j(ξ+λ)
∣∣∣

and

η j,1 = η j,1(ξ + λ) = −aj(ξ + λ)

Pj
, η j,2 = η j,2(ξ + λ) = −bj(ξ + λ)

Pj
. (3.4)

It follows from (2.5) that |μ̂>nk(ξ + λ)| =
∞∏

j=nk+1

J j(ξ + λ). Now, we estimate J j(ξ + λ) for

j ≥ nk + 1. For

λ ∈ Λu,v
n =

n∑

i=1

Pi{0, 1/3,−1/3} (see (2.6) with u = −v = {1}∞i=1), (3.5)

we can find {ci}ni=1 ∈ {0, 1,−1}n such that λ = 3−1
∑n

i=1 ciPi, and hence |λ| ≤ 3−1
∑n

i=1 Pi.

Noting that pn ∈ 3Z+ and Pi
P j
= (
∏ j
�=i+1

p�)−1 ≤ 3− j+i for i < j, we have

|ξ + λ|
Pn j

≤ |ξ|
3n j
+

∑n j

i=1
Pi

3Pn j

≤ 1

3n j
+

n j∑

i=1

1

3i ≤
1

3l +
1

2
, λ ∈ Λu,v

n j
, |ξ| ≤ 1. (3.6)
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Combining (3.3) and (3.6),

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|ηnk+1,1(ξ + λ)| = |ank+1 |

pnk+1

|ξ+λ|
Pnk
≤ r
(

1
3l +

1
2

)
,

|η j,1(ξ + λ)| = |a j |
p j

|ank+1(ξ+λ)|
Pnk+1

1
|ank+1 |

Pnk+1

P j−1
≤ c̃r
(

1
3l +

1
2

)
1

3 j−nk−2 , j ≥ nk + 2,
(3.7)

where supn≥1
|an |
pn
= c̃. Put ε = 1

3
− ( 1

3l +
1
2
) max{c̃r, r}, (3.2) implies ε ∈ (0, 1

3
). By (3.7),

(η j,1(ξ + λ), η j,2(ξ + λ)) ∈ [−1

3
+ ε,

1

3
− ε] × R = ∪k∈Z

(
Ω + (0, k)

)
(3.8)

for |ξ| ≤ 1, λ ∈ Λu,v
nk and j ≥ nk + 1, where Ω := [−1

3
+ ε, 1

3
− ε] × [0, 1]. We consider the

continuous function

f (x, y) :=
1

3
|1 + e2πix + e2πiy|, (x, y)t ∈ R2.

It is easy to see that f (η j,1, η j,2) = J j(ξ+λ) andZ f = {(m, 2m+ k)/3 : m ∈ Z \3Z, k ∈ 3Z},
where Z f is the zero set of f . Since dist(Ω,Z f ) > 0 (see Figure 1), it follows from (3.8)

and the integer-periodicity of f that

min
|ξ|≤1, λ∈Λu,v

nk

J j(ξ + λ) ≥ min
(x, y)∈Ω

f (x, y) := β > 0, j ≥ nk + 1.

Figure 1. The zero setZ f of f .

Thus for integer p ≥ 1,

nk+p∏

j=nk+1

J j(ξ + λ) ≥ βp > 0, |ξ| ≤ 1, λ ∈ Λu,v
nk
. (3.9)
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In the following, we estimate the lower bound of
∞∏

j=nk+N0+1

J j(ξ + λ) where N0 is given

in (3.1). It is easy to check that 32−N0 d̃ ≤ 1 where d̃ = supn≥1
|bn |
pn

. Similar to (3.7), we have

|η j,2(ξ + λ)| = |bj|
pj

|ξ + λ|
Pnk

Pnk

P j−1

≤ 3l + 2

2 · 3l

d̃
3N0−2

1

3 j+1−nk−N0
≤ 3l + 2

2 · 3l

1

3 j+1−nk−N0

for j ≥ nk + N0 + 1, |ξ| ≤ 1 and λ ∈ Λu,v
nk . Together with (3.2) and (3.7), it yields

2π|η j,1(ξ + λ)|, 2π|η j,2(ξ + λ)| ≤ 3− j+nk+N0+1, j ≥ nk + N0 + 1, |ξ| ≤ 1, λ ∈ Λu,v
nk
. (3.10)

Hence J j(ξ + λ) ≥ 1
3
|1 + cos η j,1 + cos η j,2| ≥ 1

3
(1 + 2 cos 3− j+nk+N0+1) for j ≥ nk + N0 + 1.

Applying cos x ≥ 1 − 1
2
x2, we obtain that

∞∏

j=nk+N0+1

J j(ξ + λ) ≥
∞∏

j=nk+N0+1

1

3

(
1 + 2 cos

1

3 j−nk−N0−1

) ≥
∞∏

j=0

(
1 − 1

3

1

9 j

)
>

1

2
(3.11)

for |ξ| ≤ 1 and λ ∈ Λu,v
nk . This together with (3.9) gives |μ̂>nk(ξ + λ)| =

∏∞
j=nk+1 J j(ξ + λ) >

1
2
βN0 := α for |ξ| ≤ 1, λ ∈ Λu,v

nk and k ≥ 1, and (i) follows.

In the following, we prove (ii). Let λ ∈ Λu,v
nk−1

, k > 1 and |ξ| ≤ 1. By (3.3), j ≥ nk + 1

implies j ≥ nk−1 + N0 + 1; hence (3.10) becomes

2π|η j,1(ξ + λ)|, 2π|η j, 2(ξ + λ)| < 3− j+nk−1+N0+1, j ≥ nk + 1. (3.12)

Similar to (3.11), we have

|μ̂>nk(ξ + λ)| ≥
∞∏

j=0

(
1 − 1

3

1

9 j+nk−nk−1−N0

)
= exp

( ∞∑

j=0

log(1 − 1

3

1

9 j+nk−nk−1−N0
)
)

≥ exp
( ∞∑

j=0

−5

3

1

9 j+nk−nk−1−N0

) ≥ exp
( −1

9nk−nk−1−N0−1

)
,

where the second inequality follows from log(1 − x) ≥ −5x (0 ≤ x ≤ 4/5). The proof of

(ii) is complete. �

Lemma 3.3. Under the conditions of Proposition 3.1(ii), then there exist an increasing
positive integer sequence {nk}∞k=1 satisfying nk − nk−1 ≥ N0 where N0 is given in (3.1), two
sequences u, v ∈ (Z \ 3Z)N, and a constant β > 0 such that

(i) |μ̂>nk(ξ + λ)| ≥ β for all λ ∈ Λu,v
nk , k > 1 and ξ ∈ [0, 1];

(ii) |μ̂>nk(ξ + λ)| ≥ exp
(−9N0+1−nk+nk−1

)
for all λ ∈ Λu,v

nk−1
, k > 1 and ξ ∈ [0, 1].

Proof. Note that lim inf
n→∞

bn
pn
< min{1, 1

d̃ } and 0 < an < bn (n ≥ 1). For fixed r ∈
(

lim inf
n→∞

bn
pn
, min{1, 1

d̃ }
)
, we can find a integer l ≥ N0 such that

3l−1 + 1

3l − 1
< min{ 1

3r
,

1

3d̃r
}. (3.13)
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It is obvious that there exists an increasing positive integer sequence {nk}∞k=1 with nk+1 −
nk > l and n1 ≥ l such that

ank+1

pnk+1

<
bnk+1

pnk+1

≤ r < min{1, 1
d̃
} ≤ min{1, 1

c̃
}, k ≥ 1. (3.14)

Define δ = {δi}∞i=1 ∈ {−1, 1}N such that δi = 1 for i ∈ {nk : k ≥ 1} and δi = −1 otherwise.

Let u = 2v = {2δi}∞i=1. For

λ ∈ Λu,v
n =

n∑

i=1

δiPi {0, 1/3, 2/3} (see (2.6)),

we can find {ci}ni=1 ∈ {0, 1, 2}n such that λ = 3−1
∑n

i=1 ciδiPi. Hence

|λ|
Pnk

≤ 2
∑nk−1

i=1
Pi

3Pnk

≤ 2

3

nk−1∑

i=1

1

3i <
1

3
, λ ∈ Λu,v

nk−1
, k ≥ 1. (3.15)

We further claim that

0 <
λ

Pnk

≤ 2 · 3l−1

3l − 1
, λ ∈ Λu,v

nk
\ Λu,v

nk−1
, k ≥ 1. (3.16)

In fact, λ ∈ Λu,v
nk \ Λu,v

nk−1
implies cnk ∈ {1, 2} and δnk = 1, and hence

λ

Pnk

=

nk∑

i=1

ciδiPi

3Pnk

=
cnk

3
+

nk−1∑

i=1

ciδi

3
(

nk∏

j=i+1

pj)
−1 ≥ 1

3
− 2

nk−1∑

i=1

1

3nk−i+1
> 0.

On the other hand,

λ

Pnk

=

k∑

j=1

cn j Pn j

3Pnk

−
∑

1≤i≤nk−1,i�n j

ciPi

3Pnk

≤
k∑

i=1

2

3

Pni

Pnk

≤ 2

3

k∑

i=1

1

3nk−ni
<

2 · 3l−1

3l − 1
,

where the last inequality follows from nk − ni =
∑k−1

j=i (nj+1 − nj) ≥ (k − i)l. Hence, (3.16)

holds.

We now prove Lemma 3.3 (i). For λ ∈ Λu,v
nk = Λ

u,v
nk−1

⋃
(Λu,v

nk \ Λu,v
nk−1

), we divide it into

two situations for discussion: λ ∈ Λu,v
nk−1

and λ ∈ Λu,v
nk \ Λu,v

nk−1
.

Case I: λ ∈ Λu,v
nk−1

and ξ ∈ [0, 1]. Then (3.15) implies
|ξ+λ|
Pnk
< 1

3l +
1
3
< 3l−1+1

3l−1
. Using this

instead of (3.6), and applying a similar argument as in Lemma 3.2(i), we can prove that

there exists c0 > 0 such that |μ̂>nk(ξ + λ)| ≥ c0 for λ ∈ Λu,v
nk−1

, ξ ∈ [0, 1].

Case II: λ ∈ Λu,v
nk \ Λu,v

nk−1
and ξ ∈ [0, 1]. By (3.14) and (3.16), we have

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 ≤ max{ank+1, bnk+1}

pnk+1

ξ+λ

Pnk
≤ r
(

1

3(k−1)l+n1
+ 2·3l−1

3l−1

)
< 2r 3l−1+1

3l−1
,

0 ≤ max{a j, b j}
p j

ξ+λ

Pnk+1

Pnk+1

P j−1
≤ 2d̃r 3l−1+1

3l−1
1

3 j−nk−2 , j ≥ nk + 2, k ≥ 1.
(3.17)

Let ε := 2
3
− 2r max{1, d̃} 3l−1+1

3l−1
. Then ε ∈ (0, 2

3
) by (3.13). This together with (3.17) gives

(η j,1, η j,2) ∈ [−2
3
+ ε, 0]2 := D for j > nk, where η j,1, η j,2 are in (3.4). Similar to (3.9), we
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have

nk+3∏

j=nk+1

J j(ξ + λ) ≥ ( min
(x,y)∈D

f (x, y))3 := κ3 > 0 , λ ∈ Λu,v
nk
\ Λu,v

nk−1
, ξ ∈ [0, 1]. (3.18)

It is easy to see, by (3.13) and (3.17), that 2π|η j,1|, 2π|η j,2| ≤ 4π3l−1+1
3l−1

d̃r
3 j−nk−2 <

1

3 j−nk−4 for

j ≥ nk + 4. Hence
∞∏

j=nk+4

J j(ξ + λ) >
1
2

(a similar argument as in (3.11)). This and (3.18)

give |μ̂>nk(ξ + λ)| > 1
2
κ3 for λ ∈ Λu,v

nk \ Λu,v
nk−1
, ξ ∈ [0, 1].

The above two cases tell us that (i) holds for β := min{c0,
1
2
κ3}.

The proof of (ii) is similar to that of Lemma 3.2(ii); we only need to use 2π|η j,1|,
2π|η j,2| ≤ 4π3l−1+1

3l−1
d̃r

3 j−nk−1−2 <
1

3 j−nk−1−4 for j ≥ nk + 1 and λ ∈ Λu,v
nk−1

instead of (3.12). There-

fore,

|μ̂>nk(ξ + λ)| ≥ exp
(−94−nk+nk−1

) ≥ exp
(−9N0+1−nk+nk−1

)
,

where the last inequality follows from N0 ≥ 3 (see (3.1)). �

Proof of Proposition 3.1. (i) Let Λu,v =
⋃∞

n=1Λ
u,v
n , where Λu,v

n is given in (3.5). Define

Qm(ξ) =
∑

λ∈Λu,v
m

|μ̂{pn},{Dn}(ξ + λ)|2 and QΛu,v(ξ) =
∑

λ∈Λu,v

|μ̂{pn},{Dn}(ξ + λ)|2.

Let {nk}∞k=1 be given in Lemma 3.2. It follows from μ̂{pn},{Dn} = μ̂nk μ̂>nk and Lemma 3.2 (i)

that |μ̂{pn},{Dn}(ξ + λ)|2 ≥ α2|μ̂nk(ξ + λ)|2 for λ ∈ Λu,v
nk and |ξ| ≤ 1. By

∑
λ∈Λu,v

nk
|μ̂nk(ξ + λ)|2 =

1(see Lemma 2.2), we have

Qnk(ξ) = Qnk−1
(ξ) +

∑

λ∈Λu,v
nk \Λu,v

nk−1

|μ̂{pn},{Dn}(ξ + λ)|2

≥ Qnk−1
(ξ) + α2(1 −

∑

λ∈Λu,v
nk−1

|μ̂nk(ξ + λ)|2
)
, |ξ| ≤ 1. (3.19)

If QΛu,v(ξ) � 1(ξ ∈ R), then by Proposition 2.1 and the uniqueness theorem of analytic

function, we can find |ξ0| < 1 such that QΛu,v(ξ0) < 1. Let η0 satisfy max{QΛu,v(ξ0), e−2} <
η0 < 1. Further, by selecting subsequences, we can assume that nk+1 − nk ≥ N0 + 1 −
log9 ln η−1/2

0
for k ≥ 1, where N0 is given in (3.1). It follows from Lemma 3.2(ii) that

|μ̂>nk(ξ0 + λ)| ≥ exp(−9N0+1−nk+nk−1) ≥ √η0 > 0, λ ∈ Λu,v
nk−1
.

Since |μ̂{pn},{Dn}(ξ0 + λ)|2 = |μ̂nk(ξ0 + λ)|2|μ̂>nk(ξ0 + λ)|2 ≥ η0|μ̂nk(ξ0 + λ)|2, summing with

respect to λ ∈ Λu,v
nk−1

, we have

∑

λ∈Λu,v
nk−1

|μ̂nk(ξ0 + λ)|2 ≤
1

η 0

∑

λ∈Λu,v
nk−1

|μ̂{pn},{Dn}(ξ0 + λ)|2 ≤
1

η0

QΛu,v(ξ0) < 1.
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This and (3.19) give Qnk(ξ0) ≥ Qnk−1
(ξ0) + α2

(
1 − η−1

0 QΛu,v(ξ0)
)
. By recursion,

1 ≥ QΛu,v(ξ0) ≥ Qnk(ξ0) ≥ Qn1
+ (k − 1)α2

(
1 − η−1

0 QΛu,v(ξ0)
)
→ +∞ as k → +∞.

This contradiction shows QΛu,v(ξ) ≡ 1(ξ ∈ R), and the proof of Proposition 3.1(i) is

complete by Proposition 2.1.

The proof of Proposition 3.1(ii) is similar to that of Proposition 3.1(i), we only need to

use Lemma 3.3 instead of Lemma 3.2. �

Proof of Theorem 1.1. For any positive integer N, we let c̃ = cN = supn≥N
|an |
pn

and

d̃ = dN = supn≥N
|bn |
pn

. It is easy to see c̃ ≥ c, d̃ ≥ d (see (1.2)). By the assumptions

of Theorem 1.1(a) and (b), we can find a sufficiently large N such that (i) lim inf
n→∞

|an |
pn
<

min{2
3
, 2

3cN
} ≤ min{2

3
, 2

3c }, (ii) lim inf
n→∞

bn
pn
< min{1, 1

dN
} ≤ min{1, 1

d } under the assumption of

1 ≤ an ≤ bn.

Let μN = δP−1
1
D1
∗ · · · ∗ δP−1

N DN
and μN+ = δPN P−1

N+1
DN+1
∗ δPN P−1

N+2
DN+2
∗ · · · . Then μ{pn},{Dn} =

μN ∗ (μN+ ◦ PN) and μ̂{pn},{Dn}(ξ) = μ̂N(ξ)μ̂N+(P−1
N ξ). Let ΛN =

∑N
i=1 Pi{0, 1/3,−1/3}. It

follows from Lemma 2.2 that ΛN is spectrum for μN . On the other hand, by the proof of

Proposition 3.1, it is clear that there exists a spectrum ΛN+ ⊂ Z for μN+. Now we show

that ΛN + PNΛN+ is a spectrum for μ{pn},{Dn} by Proposition 2.1.

Note that μ̂N(ξ) =
∏N

i=1 Mai,bi(P
−1
i ξ), where Mai,bi(ξ) =

1
3
(1 + e−2πiaiξ + e−2πibiξ). Since

PN P−1
i (i ≤ N) is an integer and Mai,bi(ξ) has integer-periodicity, we can conclude that

μ̂N(ξ + PNη) = μ̂N(ξ) for any η ∈ Z, so
∑

λ∈ΛN+PNΛN+

|μ̂{pn},{Dn}(ξ + λ)|2 =
∑

λ1∈ΛN ,λ2∈ΛN+

|μ̂N(ξ + λ1 + PNλ2)|2∣∣∣μ̂N+
(
P−1

N (ξ + λ1 + PNλ2)
)∣∣∣2

=
∑

λ1∈ΛN

|μ̂N(ξ + λ1)|2
∑

λ2∈ΛN+

∣∣∣μ̂N+
(
P−1

N (ξ + λ1) + λ2

)∣∣∣2 ≡ 1.

Hence, we complete the proof. �
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