期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:489
Finite-time blowup of smooth solutions for the relativistic generalized Chaplygin Euler equations
Article
Cheung, Ka Luen1  Wong, Sen1 
[1] Educ Univ Hong Kong, Dept Math & Informat Technol, Tai Po, 10 Lo Ping Rd, Hong Kong, Peoples R China
关键词: Blowup;    Subluminal condition;    Relativistic Euler equations;    Generalized Chaplygin gas;    Singularity;    Smooth solutions;   
DOI  :  10.1016/j.jmaa.2020.124193
来源: Elsevier
PDF
【 摘 要 】

In this paper, the Cauchy problem of the 3 + 1-dimensional relativistic Euler equations for generalized Chaplygin gas with non-vacuum initial data is considered. It is shown that for large background energy-mass density and small pressure coefficient, the smooth solutions of the relativistic Euler equations for generalized Chaplygin gas with the generalized subluminal condition will blow up on finite time when the initial radial component of the generalized momentum is sufficiently large. Moreover, our blowup condition is independent of the signs of the generalized mass. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2020_124193.pdf 338KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次