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coefficient, the smooth solutions of the relativistic Euler equations for generalized
Chaplygin gas with the generalized subluminal condition will blow up on finite time

];ii:}uo; ds: when the initial radial component of the generalized momentum is sufficiently large.
Subluminal condition Moreover, our blowup condition is independent of the signs of the generalized mass.
Relativistic Euler equations © 2020 Elsevier Inc. All rights reserved.
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1. Introduction, preliminary and statement of main result

The 3+ 1-dimensional relativistic Euler equations with fixed space-time coordinates (¢, z) = (¢, z1, 2, x3)
can be written as (reference: equation (1.3) in [20])

2 2
3t(pc +p £>+v.(pc +pv>07

2 — 2 2 2 — |u]?

c? + c? +
O %v + V- %v@v +Vp=0,
=l = vl

(1)

where p > 0, v and p are the mass-energy density, transformed velocity and pressure respectively. |v| is
always less than the light speed ¢ so that ¢ — |v|? is always positive.

System (1) plays a prominent role in cosmology: it is often used to model the evolution of the average
matter energy content of the universe. In [34], Weinberg gave an explanation of the role that the relativistic
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Euler equations (1) play in the standard model of cosmology. The equations (1) are also widely used in
astrophysics and high-energy nuclear physics [22].

The pressure p in (1), is determined by the state equation. In this circumstance, the state equation for
generalized Chaplygin gas, namely,

p=—Kp7, 0<~v<1, K>0 (2)

is adopted here.

In terms of physics, since the discovery of dark matter and dark energy as stated in the literature such as
[23,29,21] for explaining that the mass of “visible” matter only comprise 4% of the total energy density in
the four-dimensional standard cosmology model, the generalized Chaplygin gas model has been introduced
in [13] and developed in [35] as a unification of dark matter and dark energy, where the invisible energy
component is regarded as a unified dark fluid.

Remark 1. In general theory of relativity, the exact model of system (1) comes from the local conserva-
tion of stress—energy for a perfect fluid in the 4-dimensional Minkowski spacetime with metric signature
(—,+,+,+). In other words, one has that the covariant derivative with respect to the given metric g = (¢g%)
of the stress-energy tensor T, whose components are given by 7% = (p + pc®)u‘u? + pg', is zero, where
i,j =0,1,2,3, g = (¢9) is the 4 by 4 diagonal matrix with diagonal (—1,1,1,1). When one fixes a space-
time coordinates as (t,z) = (t,x1,72,73) and write u = (u!,u?, u3) the fluid velocity, then system (1) is
derived by letting

Ccu

VI [u]?

Subsequently, the negative pressure (2), which is a parameter function in a relativistic system, is assumed

as a candidate to explain the phenomenon in the last paragraph resulting from the accelerated expansion
of the universe. For more details, readers can refer to [20,30,16].

As far as mathematics is concerned, system (1) returns to the classical Euler equations

pe+ V- (pv) =0,
{(pv) ®

t+V-(pv®v)+Vp=0

when ¢ tends to infinity. For the classical Euler equations with state equation (2), the results focuses on low
dimensions Riemann problem [1,9,10,26]. To the authors’ knowledge, while there is no finite-time blowup
result of smooth solutions for the original system without symmetry assumptions, an almost blowup result
of the system (3) with pressure (2) was included in [5], where Cheung established a finite blowup result of
smooth solutions in a designed non-empty space.

On the other hand, the existing literature of system (1) with state equation (2) also mainly centers on the
investigation of the Riemann problem in the 1-dimensional case [25,24,4,3,11,12]. For some results related
to the well-posedness and long time behavior, readers can refer to [32,15,33].

Before proceeding, we point out that the result of local-in-time existence of smooth solutions of system (1)
with the negative pressure (2) is implied by the corresponding result for system (1) with positive pressure in
[18] (Makino and Ukai) by applying the theory of symmetric hyperbolic systems and the theory of Friedrichs-
Lax-Kato [14,17]. Readers can refer to the paragraph after remark 1.2 in [32] for more information.
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Now, it is clear that with

~_ pt+p
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(1) is transformed into

At V- (pv) = 0,
{ 7 + V- (pv) 5)
(pv)

++V-(prev)+Vp=0.
The Cauchy problem of system (5) (or equivalently system (1)) with the following initial data is considered.
p(:E,O) = po(x) >0, v(ac,O) = UO(x)v (6)

where the support of (po(x) — p,vo(x)) is contained in the open ball centered at origin with radius R > 0.
Here, p > 0 is the background mass-energy density.
As a special case of Lemma 2.2 in [32], one has the following finite propagation speed property (FPSP).

Lemma 2. Any smooth solution of system (1) with initial data (6) and with equation of state (2) will satisfy
(p=p,v) =(0,0)
outside
B(t) :={z : |z| < R+ st},
where
=P
is the sound speed in the far field.

On the other hand, when the equation of state is given by p = p(p) such that i) p(0) = 0, ii) p(p) > 0 and
iii) p”(p) > 0 for p € (p«, p*), where 0 < p, < p* < oo, the authors in [20] proved a finite-time blowup result
for the relativistic Euler equations, namely, system (1), in the case of infinite energy when “subluminal
condition” is adopted. More precisely, with the following subluminal condition,

0< p/(p) < 027 (7)

where ¢ is the speed of light, the authors in [20] showed, in the spirit of Sideris [27], that finite-time
singularity for smooth solutions of system (1) with initial data (6) will be developed for small background
energy-density p if the generalized mass M (0) is positive and the radial component of generalized momentum
F(0) is large enough, where



4 K.L. Cheung, S. Wong / J. Math. Anal. Appl. 489 (2020) 124193

and

F(t) = /ﬁ(t,x)v(t,x) - xdz.

R3

In this paper, with the “generalized subluminal condition”, namely,
0<p'(p) <, (8)

the first finite-time blowup result of the three plus one dimensional system (1) for generalized Chaplygin
gas without symmetry is established. To be specific, our main result is stated as follows.

Theorem 3. Consider the Cauchy problem of system (1) with initial data (6) and with the generalized sub-
luminal condition (8). Then, for small pressure coefficient K and large background energy-mass density p,
its smooth solutions will blow up on finite time if the initial radial component of the generalized momentum
F(0) is sufficiently large. More precisely, if K <1 and p > (clz)ﬁ, where ¢ is the speed of light and ~ is
the adiabatic index of the pressure (2), then for any given finite 7 > 0, the smooth solutions will blow up on
or before T if F(0) > C(7), where

F(t) = /ﬁv - xdx 9)

]R3
and

. -1

C(r) == max { [2A(7)G(m)]"/?, / %du

for some known positive C* functions A and G defined in (17) and (18) respectively.

Remark 4. While the generalized momentum F'(¢) in [20] is adopted in our case, our blowup condition is
independent of the signs of the generalized mass M (0). In fact, from (17), one has that

2
M(0) > *%(R‘F st)®.

Moreover, Theorem 3 can be extended to a generally weighted generalized momentum F; (f,t) in Corollary 12
for any f with some mild conditions.

2. Implications of the generalized subluminal condition

In the literature, the subluminal condition (7) was assumed in [20,2,7,8,19] and etc. to establish various
results of relativistic systems in fluid dynamics. As 1/p/(p) is the sound speed, (7) means that one requires
that the sound speed does not exceed the light speed, which is a common practice in cosmology and
astrophysics [6]. Furthermore, it was stated in theorem 2 of [28] that system (1) is strictly hyperbolic if and
only if (7) is fulfilled. Under this background, the implications of (7) or more generally (8) in the case that
the state equation is given by the generalized Chaplygin gas (2) are presented in this section.

Lemma 5. In the case that p is negative and given by (2), the generalized subluminal condition (8) implies
that p and p have lower bounds depending only on c, K and ~y. More precisely, one has
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K~ e
p= (C—2> (10)
and
L[\
p>—K>y+ | — . (11)
Y

Remark 6. The corresponding results of the above lemma if (7) is assumed are that one has two strict
inequalities in (10) and (11).

Proof. From (8), one has

0<p(p)=Kyp "t <c?

or
p’)’+1 > K’}/C_Q
1
EET- K\ H
pZ(K'Y)'V ic ~ 1:(0—2) . (12)
Hence,
P < () e
_ a2y c? T
p=—Kp > K5y e = K (7) 19)

The proof is completed. O
Next, we show that for small K value, p and p are always non-negative.

Lemma 7. Let p and p be smooth solutions of system (5) with K < 1. Then, the generalized subluminal
condition implies p > p > 0.

Proof. From (4), one has

. p
pP=p— 5 2>p
C

as p is negative. Thus, it suffices to show p is non-negative.
Note that

p>0iff p2 +p>0

1
iffchEK—W
P

1
. K\ 7+
ez ()

where “iff” stands for “if and only if”.
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From (12), one has

if K < 1. The proof is completed. 0O
3. Proof of finite-time blowup result

The proof of Theorem 3 is divided into 4 intermediate results and a final step.

Lemma 8 (Intermediate result 1). Consider the smooth solutions (p, p,v) of system (5) with initial data (6).
Then, one has

where

Proof. Note that M (t) is well-defined by the FPSP.
M(t) = / P
R3

_ _/V-(ﬁv)da: (by (5),)
R3

=0 (by Divergence Theorem).
Hence, M (t) = M(0). The proof is completed. O
Then, one has the following lemma which is an unexpected equality in a general setting.
Lemma 9 (Intermediate result 2). Consider the smooth solutions (p, p,v) of system (5) with initial data (6).

One has, for any form of p = p(p) such that p is a C* function of p, the derivative of F(f,t) (denoted by
F'(f,t)) with respect to t is given by the following equality.

P = [ gpekars [ Looapacs [ o-pes+ . (1)

B(t) B(t) B(t)

where

F(f,t):= /f(r)ﬁv - xdx.
R3

Here f is any positive Ct increasing function of r = |x| on [0,00).
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where
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F(f.1 dt/fpv wdz

— / (o), - wde
R3

—— [ 1T Gow0) + Vp) - wis
R3

= Il + IQ;

I ::—/fV-(ﬁv@v)-xdm
R3

—/pr-xdx.
3

To cope with I, one has, for any p € C!, one has

To handle Iy, one has

—/V(p—@ - fade
R3

- / (0 — )V - (fz)da

R3

— [6-pF + frie
R3

— [ w531 + 1o
B(¢)

3
V-(prov)-z =Y di(pvw,)

jf

3

= [@(ﬁvivj)xj + ﬁvivj(’)ixj — ﬁ’l}i’l)jail‘j]

= [0i(pvivjx;) — pviv;0iz;]

(15)
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3
Z pU;x ;v (pv1v1 + poavg + pusvs)
j=1

[
<

3
=V- Zﬁvjxjv — plv|?
j=1

= V- [3(v - 2)] - plof?

where 0; is the partial derivative with respect to z;.
Hence, by Divergence Theorem,

L= / fAlolPda — / V- [P 2] da
R3 R3

_ / Aol + / V- [P 2] de
R3 R3

/ folvlde + [ Lo (oo ap) e

R3
/fﬁ]v\ der/f p(v-x)%dx
= /fﬁ|v|2dm+ / J%ﬁ(v-m)?dx. (16)
B(t) B(t)

Combining (15) and (16), one completes the proof. O
Next, by Cauchy’s inequality, the following lemma is achieved.

Lemma 10 (Intermediate result 3). Consider the smooth solutions (p,p,v) of system (5) with initial data
(6), with K <1 and the generalized subluminal condition. Then, one has

. F2(¢
plof?dz > _ )

o JEERE

B(t)

Proof. By Cauchy inequality, one has

F2(t) = / v - xda

B(t)

/ plx|?dx / plv|*dx

B(t) B(t)

IN
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< / plx*dx / plv|?dx
B(t) B(t)
The result follows. 0O
For the second last step, the following auxiliary functions A and G are analyzed.

Lemma 11 (Intermediate result 4). Set

A(t) == M(0) + 25l2(R + st)® (17)
and
G(t) := 4 (R + st)? (Kﬁ (07—2> R Kp7> . (18)

Then, under the conditions of the Theorem 3, both A and G are positive C' increasing functions of t for
any value of M(0). Moreover,

At) = /ﬁ]x|2dx.
B(t)
Proof. Note that
0< /ﬂx|2dx
B(t)

=M(0)+p / |z|2dz
B(t)
272 5

= A(1).

Thus, A(t) is positive C! increasing for any value of M (0).
On the other hand, note also that

_ Y\ 7
f’>(c—2)

and K <1, G is an increasing positive C! function. O
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Final step.
Putting f =1 in (14), one has

F'(t) = /mv\de+3 /(pfﬁ)d;z:

B(t) B(t)
F2(t)
> —p)d
=0 +3 | (p—p)dx
B(t)
F2(t)

%

b

=
+
)

&
=
/l‘\
N

Q‘H
N
2|
~

4“2
|
s
~

ORIy <KT (

N———
3
+
=
|
2
N——

By (13), which is given by

1 62 '7_1_1
2o (2)7
Y
one has
F2(t)
!
> — .
F(t) 2 S - 6t

The result follows from Lemma A.1 in the Appendix with NV = 2.
4. Blowup mechanism

In this section, the blowup mechanism of solutions in Theorem 3 is discussed. We remark here that the
corresponding mechanism for Corollary 12 is similar as f(r) is a C! function.

First, the singularity type of system (1) in Theorem 3 is different from shock singularity (also known as
wave breaking), which means the solution remains bounded but one of its higher derivatives blows up. It
is because we will show that under the generalized subliminal condition (8), negative pressure (2) and the
condition that the light speed c is the limit speed of v, the blowup phenomenon has to be occurred within
the mass-energy density p or the velocity of the fluid u. The details are as follows.

From Lemma A.1, one knows that it is the F(¢) in (9) that becomes unbounded in finite time. More
precisely, one has F'(t) — 400 as t — 7 if the conditions in Theorem 3 are satisfied (Note that F' is
increasing from the proof of Lemma A.1). Moreover, as the magnitude |v| of v is bounded by the light speed
¢, one must have that p becomes unbounded in finite time. From (4),, one has

1

2 _K—

- pc2—|—p _pc Kp’Y
P AP T AP

1
Ky\ "+t
Note that by Lemma 5, p has a positive lower bound (—27) . Thus, the term 1/p? will not become
c

infinite for all time. It follows that either pc? tends to infinity in finite time or |v| tends to ¢ in finite time.
However, as in the setting in [20], v is given by
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cu
VI+ T
1.2

where u = (u!,u?,u%) is the velocity of the fluid. Hence, |v| tends to c is equivalent to |u| tends to infinity.

In conclusion, one must have either infinite mass-energy density p or infinite fluid velocity w in finite time
for the blowup phenomenon in Theorem 3.

It is worth mentioning that in [31], the authors constructed exact singular solutions for the general d+ 1-
dimensional relativistic Chaplygin (corresponds to v = 1 in our setting) Euler equations in radial symmetry.
The type of singularity therein is described as light-like singularity, from which the blowup mechanism is
consistent with the loss of the strict hyperbolicity. Moreover, for d > 2, the exact singular solution is given
by

0 _ 1 § z
(u’,u,p) = (\/1_52,i\/1_§zr,oo>,

where § = 7, r = |z|, u = u(t,z) is the fluid velocity in coordinates (t,z) = (t, 2%, 22, ..., 2%) and T is a
positive constant. One can see that the solution blows up for all time ¢ and u becomes infinity on the lines
¢ = £1. In contrast, our result demonstrates that within the framework of strict hyperbolicity (because of
the subluminal condition), the smooth solutions of system (1) with v € (0,1] and without symmetry can
develop singularity in finite time.

5. Extension of Theorem 3

In this section, we have the following extension of Theorem 3.

Corollary 12. Consider the Cauchy problem of system (1) with initial data (6) and with the generalized
subluminal condition (8). Then, for small pressure coefficient K and large background energy-mass density
p, its smooth solutions will blow up on finite time if the initial radial component of the generalized weighted
momentum F1(0) is sufficiently large. More precisely, if K < 1 and p > (Clz)ﬁ, where ¢ is the speed of
light and v is the adiabatic index of the pressure (2), then for any given finite T > 0, the smooth solutions
will blow up on or before T if F1(0) > C1(7), where

Fi(t) := /f(r)ﬁv - xdx
R3

for any positive Ct increasing function f of r := || on the non-negative real line and

. ~1

Ch(r) = max { [241(7)Ga (1)]2 / 1
0

—d
241 (p) :

for some known positive C' functions A; and Gy defined in (19) and (20) respectively.

Proof. First, one has, by Lemma 9,
!
0 = [ gatde s [ Dot [(o-pes+ s
(t) B(t) B(t)

> / f7loPPdr + / (p— P)3S + f'r)da.
(t)

B(t)
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As in the proof of Lemma 10, one has

Fi(t) = / fpv-zdx

IN
—
~
ASH
8

()
Q
8
—
k‘!
SN
<
o
S
S

B(t) B(t)
Thus,
- F3(t
B (/t) Ao > S0
where
Ay(t) == f(R+ st)A(t). (19)

Here, A(t) is previously defined in (17).
Hence,

B(t) > / f7lef?de + / (p— P)(3S + f'r)de
B(t) B(t)

Set
1 C2 J+1
Gi(t) ==~ <—Kw (7) + Kﬁ”) 2% (R + st)’ f(R + st)] . (20)

Then, one has

and both A; and G are positive increasing C'!' functions of t. Now, the result follows from Lemma A.1 in
the Appendix with N = 2 again. The proof is completed. O
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Appendix A

Lemma A.1. Consider the following differential inequality in F(t) with N > 1 (for integral N, it means
N >2).

F'(t) >

— G(b). (21)

Suppose the C1 coefficients A(t) and G(t) are positive and increasing. Then, for any given finite T > 0,
F(t) will blow up on or before T if F(0) > C(1), where

1

C(r) = max { 2A(D)G(H) Y, / ;VA—_N;du o . (22)
)
Proof. Fix 7 > 0, for any 0 < ¢ < 7, (21) becomes
Foy 2 S8 -6
= Z;Z((f)) + {ZZ((;) - G“)]
> S+ 2 OO
: ZZ((;)) +Q(t)
By (22), Q(0) > 0. Hence Q(t) > 0 on [0,7] and
P2 50 (23
on [0, 7]. Note that F(0) > 0. Hence, F(£) > 0 on [0,7] by (22) as F is increasing by (23). Therefore,
P e —0/ TG
< e < P / TG (@)

By (22), the right hand side of (24) is negative when ¢ = 7. Thus, the solutions blow up on or before time
7. The proof is completed. O
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