期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:305
Delay effect in models of population growth
Article
Giang, DV ; Lenbury, Y ; Seidman, TI
关键词: delay differential equations;    comparison theorem;    omega-limit set of a persistent solution;    one-parameter semi-group;    convergence to equilibrium;    Nicholson's blowfly model;    periodic solutions;   
DOI  :  10.1016/j.jmaa.2004.12.018
来源: Elsevier
PDF
【 摘 要 】

First, we systematize earlier results on the global stability of the model x + mu x = f (x((.) - iota)) of population growth. Second, we investigate the effect of delay on the asymptotic behavior when the nonlinearity f is a unimodal function. Our results can be applied to several population models [Elements of Mathematical Ecology, 2001 [7]; Appl. Anal. 43 (1992) 109-124; Math. Comput. Modelling, in press; Funkt. Biol. Med. 256 (1982) 156-164; Math. Comput. Modelling 35 (2002) 719-731; Mat. Stos. 6 (1976) 25-40] because the function f does not need to be monotone or differentiable. Specifically, our results generalize earlier result of [Delay Differential Equations with Applications in Population Dynamics, 1993], since our function f may not be differentiable. (c) 2004 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2004_12_018.pdf 122KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次