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Abstract

First, we systematize earlier results on the global stability of the modelux = f(x(- — 1))
of population growth. Second, we investigate the effect of delay on the asymptotic behavior when
the nonlinearityf is a unimodal function. Our results can be applied to several population mod-
els [Elements of Mathematical Ecology, 2001 [7]; Appl. Anal. 43 (1992) 109-124; Math. Compult.
Modelling, in press; Funkt. Biol. Med. 256 (1982) 156-164; Math. Comput. Modelling 35 (2002)
719-731; Mat. Stos. 6 (1976) 25—40] because the funcfiaimes not need to be monotone or dif-
ferentiable. Specifically, our results generalize earlier result of [Delay Differential Equations with
Applications in Population Dynamics, 1993], since our functfomay not be differentiable.
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1. Introduction

Given a continuous functiofi: Ry — R, and a nonnegative functidns 0 on[—z, 0],
we consider the delay differential equation
)E+/Lx:f(x(~—r)), x(s)=£&(s) forse[—1,0]. (1.1)

For simplicity, we assume throughout ttgais bounded. It follows that (1.1) has a unique
solution—e.g., one can proceed by intervals of lengthwith x/:(-) nonnegative and
continuous fort > 0. We denote the solution of the delay differential equation (1.1)
by x(-) =xre(). Itis easily seen that one has the equivalent integrated formulation:

t

x(1) =e M Dx(a) + / e M) f(x(s — 1)) ds (1.2)

a

for r > 0. (Actually, continuity of f is not needed for (1.2), only enough regularity to
ensure the requisite integrability.) We further note the following

Lemma 1. Given real constantg, v andt > 0, there is a functiorX = X (¢) such that the
solutiony of the autonomous linear delay differential equation
ytuy+vyt—1)=g@®), yl-r0=n, (1.3)
has the integral representation
t
y(1) = yo(t; ) +/X(l —s5)g(s)ds, (1.4)
0
whereyg = yo(+; n) is the solution of the associated homogeneous initial value problem.
Both X () and yg decay exponentially if
hz):=z+pu+ve “=0 = R <0, (1.5)

i.e., if every root of the characteristic equation h@agrictly) negative real part, and grow
exponentially ifz(-) has any root with positive real part.

Proof. See, e.g., [6]. Note that
o
||X||1=/|X(t)|dt <00 (1.6)
0
whenX decays exponentially. O

A standard calculation shows that (1.5) holds forra#l 0 when|v| < u and, conversely,
fails when|v| > u unlessr is restricted so that
arcco$—u/v]

T <Te=Tu(u,v)= T x.7)
veE—u
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(cf., e.g., [1,5]). We will later focus our attention on delay equations of the form (1.1) in
which the nonlinearityf satisfies:

of R, =10, 00) — Ry is continuous.

e There is a unique equilibriumh> 0, sour = f () > 0.
{f(r)>,ur forO<r <r,

[ ]

fr)y<wpr foralr>r. (1.8)

2. Comparison theorem and conseguences
An easy argument then provides the following basic comparison theorem.

Theorem 2. Let f, & and correspondingly, n be as above witty nondecreasing. Set
x:=xgeandy :=xg ;.

(1) Supposef < g where relevanti.e., f(r) < g(r) for eachr in the range off (x)) and
supposé < non[—rt,0]. Thenx(z) < y(¢) forall .
(2) Supposef > g where relevant ang > n on[—t, 0]. Thenx(¢) > y(¢) for all z.

Proof. Both cases go in essentially the same fashion, so we only consider the first case
(with f < g, etc.). Now suppose the result were false. We could then find a latgest
such thate(s) < y(s) on[—rt,¢,). For anyt <t, +t we would haver =t —s — 7t < ¢,

for 0 <s <t whencex(r) < y(r) for suchr so f(x(r)) < g(x(r)) < g(y(r)). It follows

from (1.2) and the corresponding integrated formulation involynipat x (¢) < y(¢) for

suchr € [1,, t, + 7) as well, contradicting the definition af. O

We remark that this comparison theorem generalizes to equations in partially ordered
Banach spaces, etc., but we do not pursue this here.

Corollary 3. Let f, &, x be as above ilf1.1).

(1) Suppose there is soné > 0 such thatf (r) < umaxXr, M} and suppose < M on
[t« — T, t]. Then, alsoc(r) < M forall t > ¢,.

(2) Suppose there is some > 0 such thatf (r) > wmin{r, m} and suppose > m on
[t« — 7, t:]. Then, alsoc(r) > m for all t > t,.

Proof. Again, both cases go in essentially the same fashion so we need only consider the
first. Further, since we can restart at apyit is sufficient to consider, = 0 so we may
assume& < M on[—rt, 0].

Taken = M andg(r) := umaxr, M}. Clearly, g is nondecreasing and the hypotheses
yield £ < n and f < g. We immediately verify thay = M satisfies the delay differential
equation to have = x, , so that the result follows from Theorem 20
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We will be seeking asymptotic upper and lower bounds for solutignsof (1.1) and
to this end it is convenient to introduce

i = m(x) = liminf x (1), M = M (x) =limsupx (). (2.2)

t—00
Lemma4. Let f be bounded witld < f(r) < B. ThenM < B/p.

Proof. From (1.2) we have
1
x() <e Mx(0) + / Be M%) g,
-7

which gives the desired result as> co. O

We also note some information about thdimit set of a nontrivial solutiorx, e.g., as
used in [10].

Lemma 5. For any bounded solutior = x ¢ of (1.1), there are functions, v defined
onRR such that

(i) u,v satisfy(1.1)onR.
(i) m<u@),v@t)<M
(i) u©@) =M, u0)=0; v(0)=m, v(0)=0, (2.2)

with i = m(x), M = M(x) as in(2.1).
For completeness, we sketch a proof here.

Proof. By the definition of M there is a sequenag — oo such thatx () — M and

we setu () = x(t + t)—e.g., fort > —1;.. The set{uy(-)} is uniformly bounded with
uniformly bounded derivatives, so there is a functiosuch thatu; — « uniformly on
compact sets ifR. Since the derivatives also converge uniformly on compact subsets and
eachu, satisfies (1.1), so does Since, for compact séf and anye > 0, the definition

of M givesim — e < uy <M + ¢ for _large enoughk, we have (i) in the limit. Since
ur(0) = x(t) — M, we haveu(0) = M and, as that is necessarily a maximum, we also
haven(0) = 0. The construction of(-) is similar. O

3. Asymptotic bounds and attraction

Theorem 6. Let f, £, andx be as above ifl.1).

(1) Suppose there is some= 0 such that

fry<ur forO<r<r,
fr)y<upur forallr>r. (3.1)
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Then,M < 7 < oo and there is a nonincreasing positive functionsuch that
x(t) =xpe(t) <z4(t) withz (1) — 7 ast — oo. (3.2)
(2) Suppose there is some= 0 such that
fr)yzur forr>r,
f(r)y>ur foralO<r<r. (3.3)
Then,n > 7 and there is a nondecreasing nonnegative functiorsuch that
x(t) :=xpe(t) 2 z_(t) withz_(1) — 7 ast — oo. (3.4)

Proof. Yet again, both cases go in essentially the same fashion. For the first case we begin
by fixing M > 7, M > &, and anye = g9 > O with 7 + ¢ < M. We then let

ver=max{f(r)/rir+e<r<M}<p (3.5)
and, choosing soy, <y < u, set

g(r) = ge(r) :=maX{u(i +e), yr}. (3.6)
Now, letA, > 0O satisfy the characteristic equation

he tyet=p (3.7
and set

YE() =y () == Me e (3.8)

If we did not haves bounded ori—1, 0], we note that is continuous for > 0 so we
could restart at with bounded initial data. Note also that, sinfevas assumed continuous
and[r + ¢, M] is compact and nonempty, the ‘max’ in (3.5) is achieved gand .

Moreover, one easily sees that (3.7) has a unique positive solutiomsiage.

The construction yields* which satisfies the delay differential equation

y(®) =—py@) +yy—1) (3.9)

so, takingn = n, to be y* on [—7, 0], this y* must coincide withy = x, , so long as
y*(t —1t) > 7+, wherey (r +8) = u(r + ¢). Note that we can—and do—choogelose
enough tqu to ensure thad < 2¢.

To apply Theorem 2, we note thatas given by (3.6), is clearly nondecreasing and ob-
serve that our hypotheses ensure directly fha) < g(r) forr <7 and forr <r <7 +¢,
while choosingy > y. ensures thaff (r) < g(r) for 7 + e <r < M. Since Corollary 3
ensuresc(r) < M, it follows that f < g where relevant and thgt< M < n. Thus, Theo-
rem 2 applies and we hawe< y := x, ,—whencex < y* as long ag* coincides withy.
Noting that this includes an interval of lengtton whichy <7+ 6§ < 7 + 2¢, we can apply
Corollary 3 again (now restarting at the end of this interval) to seexttiareafter remains
belowr + 2¢—i.e., we have shown that

x(1) < ze(t) = max{Me ™ 7 4 2¢}

for all z. Since this holds for arbitrarily small> 0, we have (3.2), as desired, with(¢) :=
inf{z.(z): ¢ > 0}. This completes the proof for the first case.
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Using the second case in Theorem 2, we will get a corresponding lower bound. First,
however, we note that (1.2) gives

0
x(7) = e M x(0) + / e T £(£(s)) ds,
—T
which will be strictly positive for nonnegative, nontrivigd—and thenx (¢) will be strictly

positive for allz > 7. We can therefore assume, restarting if necessary that: for some
m > 0. The rest of the proof is then almost exactly like that for the first case.

Theorem 7. Let f, &, x be as above iffl.1) and suppose there is sorme: 0 such that
fr)>ur forO<r<r,

fry<ur forallr>r. (3.10)
Suppose, also, that

either fr)<ur forO<r<r

or fry=ur foralr>r. (3.11)

Then,x g (t) — 7 ast — oo for every nontrivial initial datag > 0—i.e.,m =7 = M.

Proof. We consider explicitly only the first alternative in (3.11). Since this with (3.10)
include (3.1), the first case of Theorem 6 applies to gwe< 7. If 7 = 0, we are now
done so we need only show > 7 whenr7 > 0. For anye > 0 we can choosé > 0 so

f(r) > f(r) —ueon[r,r+48] and there is somg such thate (r) <7 +dforallt > 15— .
Settingr =7 — ¢, this givesf (r) > ur for 7 < r <7 + §. Restarting ats, and noting that

only values ofr belowi + § are relevant, we thus have the hypotheses for the second case
of Theorem 6 for the restarted problem withreplaced byr. Thus,m > 7 =7 — ¢ for
arbitrarye > 0 som > . Combining these upper and lower asymptotic bounds is just the
desired result. O

We henceforth will consider equations of the form (1.1) subject to the hypotheses (1.8).
If max{f(r): r > 0} = B < ur, giving the first case of (3.11), then we already know
from Theorem 7 that all solutions converge to the equilibriirso we will also assume
henceforth thatB > ur with yg < r: (1.8) then gives (3.10) but we have neither case
of (3.11).

4. Attraction dependent on the delay

As noted, we henceforth assume (1.8):
of R, =[0,00) — R, is continuous.
e There is a unique equilibriumh> 0, sour = f () > 0.
{f(r)>,u,r forO<r <r,

fr)<ur forallr>r. (4.2)
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Lemma 8. Assumé4.1). Then, for every nontrivial solution of (1.1)we have
eFF<m<I<M< max  f(r)/u 4.2)

e M rLr<r
with i = m(x), M = M(x) as in(2.1).
Proof. From Corollary 3 we know is bounded and let, v be as in Lemma 5. Then, as
1(0) =0=1(0),
f(u(=1)) = pu) = uM > pu(—7)

and, similarly, f(v(—t)) = nv(0) < pv(—1). But f(r) > ur if and only if x < 7, so
u(—t) <r <v(-1). Thus,

v(0) = < u(—7) <F <v(—7) < M. (4.3)
Sinceu, v satisfy (1.1) on all of R, we may apply (1.2) with =0, a = —7 to get, as
f() =0,

0
m=v(0)=e " v(-1)+ / e’”f(x(s - r)) ds > e *v(=1) = e Hr

and consequently,(—1) > v(0) > e #*7. Therefore,
u = fu(=1)/u< max f(r)/p.
e HTrLr<r

The proof is complete. O

Our next objective is to show global attraction to the equilibrium when the delay
not too large.

Theorem 9. Assumg4.1) and the following pair of one-sided Lipschitz conditions
0L f(r)—ur<LiGG—r) fore *r<r<r,
O ur— f(r)<Lo(r —7#) forr<r<B. (4.4)
Suppose is such that
o

«/L]_Lz'

Then, every nontrivial solution dfL.1) converges to the equilibrium

1-e"H< (4.5)

Proof. Let u, v be as in Lemmas 5 and 8. It then follows from (4.3) that there is some
a € [—1, 0] such that«(a) = ¥ and we set

A= {s €la,0]1C[-7,0]: u(s —1) < ;7}.

Note that fors € [—7, 0] \ A we haveu = u(s — 1) > 7 S0 f (u) — ur < 0 by (4.1), while
for t € A we haveu <7 ande ™7y < m < u from (4.2) in Lemma 8 so (4.4) gives

J@) —pr < Li(r —u) < L1(F —m).
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Thus,

0
fe’“[f(u) — ur]ds < Li(F —m) / eMds =Li(F —m)(1— e H7).
A -7
Applying (1.2) withz = 0 and thisa, we then have

0 0
M—fz[u(O)—e““u(a)]+M/ewdS:/em[f(”(s—T))—Mf]ds

a

< / [ fw) = pilds < La(F —m)(L—e ™) /.
A

Somewhat similarly, we have somes [—1, 0] such thatv(a) =7 and now setd = {s
[a,0]: v(s — ) > r}, noting that (4.4) ensures th&l) > ur for r € [e”#TF, 7]. Much as
before we then get

F—m<LaM—7F)(1—e ")/n

and combining givesr — i) < [L1L2(1— e™*7)2/u?](F — m). Thus, using the assump-
tion (4.5), we haver = and thenM =r as well. O

Essentially the same argument gives a localized version when, instead of (4.4) and (4.5),
we have| f'| suitably small neaF.t

5. Ancther stability result

We now return to the integral formula (1.4), noting that ifs a solution of (1.1), then
y = x — ¥ is a solution of (1.3) and an appropriate choice bf

g = fi(yt —v) with fi(r) :=[fG+r)— fF)]+vr, (5.1)

where, of course, we anticipate taking= — f'(r) for differentiable functionsf, although
this is not required.

It is worth noting that with this choice aof we necessarily haveé1, Ly > | f/(F)| = v
in Theorem 9 so that Lemma 1 suggests that we could not expect asymptotically stable
convergence to equilibrium whan> p if we do not have (1.7); indeed, as we will note
in more detail in the following section, (1.1) will then have a nontrivial periodic solution.
Even ignoring the constraint onin requiring thatf (r) > ur for r € [e7#7F, r], the as-
sumption (4.5) takind.1 = Ly = — f/(F) = v leads to(1 — e™#*) < /v oOr

f<1|n[ L } (5.2)

1 Since we anticipate having(0) = 0, this part of (4.4) must be treated as a significant constraint on
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Clearly this, as a sufficient condition for convergence to equilibrium, is the best one can
obtain using Theorem 9 and it is interesting to compare with the (necessarily weaker)
condition (1.7). There is obviously a gap between these, and we now seek to handle inter-
mediate delays under appropriate conditions.

Theorem 10. Supposef is a unimodal function and > 0 satisfieq1.7)with v = — £/ (7).
Further, suppose

|fF+r)— f@ +vr|<Llr| fore ™7 —F<r<B-F. (5.3)
If £ is ‘flat enough near equilibrium’ such th#b.3) holds with
L <1/lIX]1, (5.4)

whereX is as in(1.4), then every nontrivial nonnegative solution(@f1) converges to the
equilibriumr ast — oo.

Proof. SetM maxM — 7,7 —m} and, again, let, v be as in Lemmas 5 and 8. First
supposeM M — 7. We then lety(t) =u(t—T)—r soM =u(0)—7 = y(T) with T > 0
arbitrary. We note thaf < y < M gives|y| < M. Therefore, (5.3) givesfi(y)| < LM
uniformly. Thus, using (1.3) with (5.1), we have

T T
M= yo(T) + / X(T —s)fl(y(s — T))ds < yo(T) + /|X(T —s)‘Lll;Ids
0 0
<Fo(T) + LI X|I1.M (5.5)

using (1.6) and lettingip = yo(-; M). For the alternative casel =7 — i, we let y(r) =
v(t —T)—r and, similarly, again obtain (5.5) for arbitrafy Sinceyo(7') — 0 asT — oo,
(5.4) ensures tha/ = 0 sox(¢) — r ast — oo. O

6. Nonconstant periodic solution for large delay

In this section we will use Hopf bifurcation and fixed point theory to prove the existence
of a nonconstant periodic solution when the detaig large enough. To see more clearly
the effect of delay we lett = 1. The usual linearized analysis lets= 7 + ¢y and notes
that, to first order ire, the perturbation satisfies

y+y=fHyt-1.
Seeking a solution of the form() = exp(rt), we obtain the characteristic equation for
L+ 1= f'(r)exp(—tA).

We will have linearized stability if all complex roots of this characteristic equation have
negative real parts. |ff'(r)| < 1 we have the local convergence to the positive equilibrium
for all delays. If| f'(r)| > 1, the effect of delay will occur. More exactly, in this case with

1 1
> Ty = o1 arccogf,(F)
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there is a nonconstant periodic solution of Eq. (1.1).
Atay [1] used the Schauder fixed point theory to prove that there is a nonconstant peri-
odic solution of the equation

y=th(y, y(- = D),
provided

T> Ty =

\/DZ%CZ arcco —%),

whereh(u, v) is differentiable at the origim (0, 0) = 0 and
0<C:= —g—i’(o, 0)<D:= —g—i(o, 0).

We lety(¢) = x(zt) — ¥ and
h(u,v)=r—u+ f(v+r).

Then,
c=1, D=—f'(7)

and we reproduce

1 1
T = o1 arcco.,f,(f).

Here, we assume thgt () < —1 and the function arc cosine takes its valu¢dnr].

Lemma 11. If a positive solutione of (1.1) does not oscillate around the positive equilib-
rium 7 thenx(¢) tends tor ast — oco. Consequently, every nonconstant positive periodic
solution should oscillate around the positive equilibrium.

Proof. If x does not oscillate arourid then either

limsupx(®) <r or liminfx(@¢)>r.
t—00 t—>00
From Lemma 8, in the first case, we have limsyp = r. For the second case, we have
liminf x(¢) = 7. So it is enough to consider the second case. Using the proof of Lemma 8,
we getr > u(—t) > v(0) =7. Henceu(—t) =7 andu(0) = f (u(—t)) =r. The proof is
now complete. O

Y. Cao [2] proved that for < t, there is no periodic solution which is larger thahn
and oscillates slowly around the only positive equilibrianfor t > z,, there is at most
one periodic solution which is larger thap and oscillates slowly around Recall that a
T -periodic solution is calledlowly oscillated around the positive equilibriym 7 > 1,
x(0) =x(T) =r, and there igg € (0, T — 1) such that

x(to)=r, x(®)>r forre(0,70) and x(t)<r forte(t,T).

Cao assumes that is decreasing fronyg < 7 until f(yg). He also requires that the
function h(x) = xf’(x)/f(x) is monotonically increasing ifiyp, 7] and decreasing in
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[7, f(yo)]. Recall thatf (yp) is the maximal value off (y), wheny > 0. Without these
assumptions o one can construct several slowly oscillated periodic solutions for (1.1).
Also, it is known that, if a periodic solution is not oscillated slowly, it should be unstable.
Of course, Cao did not prove these results directly, but from his works one can deduce this.

7. Some applications

Equation (1.1) with unimodaf has been proposed as a model for a variety of physio-
logical processes, where in most cases, one of the model functions

f(x) =kx‘exp(—x) (7.1)
or
kx
=1y 72

with parameterg > 0 andc > 0, is considered [3,4,9,11-13].
The population dynamics of Nicholson’s blowflies have been studied [9,12] using a
function f of the form (7.1) withc = 1. In such a casey, is differentiable and one has
k
"

and
L k
v:—f(r):,u(ln——l).
"
Thus, Theorem 9 yields, using (5.2),
1 |:In(k/M) — 1}
<=In| —————
wo LInk/p) —2

as a sufficient condition for convergence to equilibriaigiven in (7.3), provided > e?.
Moreover, there is a nonconstant periodic solution to the model equation if

T>1F= ! arcco{é],
pv/nk/w) —2)Ink /1) 1-1Ink/p)
using (1.7).
In respiratory studies, (1.1) has been employed in which the response function takes the
form (7.2). In such a case, one has the positive equilibrium

B k 1/c
F= (; —~ 1) : (7.4)

providedk/u > 1. Then,
v=—f'(F)= %[(c— Dk —c,u].
Thus, Theorem 9 yields, using (5.2),

lln[c(l—u/k) —1i|

T <
wo LeQ—p/k) -2
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as a sufficient condition for convergence to equilibricigiven in (7.4), provided

c(l— ﬁ) > 2.
k

Moreover, there is a nonconstant periodic solution to the model equation (1.1) \&ghn
(7.2) if

>t = ! arcco{;],
punele(L—u/k) —2)(L—pu/k) 1—c(A—p/k)
using (1.7).

8. Conclusion

We have given a basic comparison theorem and discussed some of their consequences.
The effect of delay on the asymptotic behavior has then been studied and the periodicity of
positive solutions investigated for large delays. Our discussions allow the nonlingarity
to be nonmonotonic and nondifferentiable which are then more general than those of [8].
Thus, our results should be applicable to a wider range of population models; for example,
models arising from the study of an optically bistable device [3,4], blood cells production,
respiration dynamics, or cardiac arrhythmias [11,13]. We can also find application with a
system in which the growth function is not smooth, such as a population where growth
occurs in birth pulses (during the breeding season) and not continuously throughout the
year.

Open problem. Investigate the stability of periodic solutions of (1.1) and the structure of
w-limit sets when the delay is large enough!
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