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Abstract

First, we systematize earlier results on the global stability of the modelẋ + µx = f (x(· − τ ))
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1. Introduction

Given a continuous functionf :R+ → R+ and a nonnegative functionξ �≡ 0 on[−τ,0],
we consider the delay differential equation

ẋ + µx = f
(
x(· − τ)

)
, x(s) = ξ(s) for s ∈ [−τ,0]. (1.1)

For simplicity, we assume throughout thatξ is bounded. It follows that (1.1) has a uniq
solution—e.g., one can proceed by intervals of lengthτ—with xf,ξ (·) nonnegative and
continuous fort � 0. We denote the solution of the delay differential equation (
by x(·) = xf,ξ (·). It is easily seen that one has the equivalent integrated formulation:

x(t) = e−µ(t−a)x(a) +
t∫

a

e−µ(t−s)f
(
x(s − τ)

)
ds (1.2)

for t � 0. (Actually, continuity off is not needed for (1.2), only enough regularity
ensure the requisite integrability.) We further note the following

Lemma 1. Given real constantsµ,ν andτ > 0, there is a functionX = X(t) such that the
solutiony of the autonomous linear delay differential equation

ẏ + µy + νy(t − τ) = g(t), y|[−τ,0] = η, (1.3)

has the integral representation

y(t) = y0(t;η) +
t∫

0

X(t − s)g(s) ds, (1.4)

wherey0 = y0(·;η) is the solution of the associated homogeneous initial value prob
BothX(·) andy0 decay exponentially if

h(z) := z + µ + νe−τz = 0 ⇒ �(z) < 0, (1.5)

i.e., if every root of the characteristic equation has(strictly) negative real part, and grow
exponentially ifh(·) has any root with positive real part.

Proof. See, e.g., [6]. Note that

‖X‖1 =
∞∫

0

∣∣X(t)
∣∣dt < ∞ (1.6)

whenX decays exponentially.�
A standard calculation shows that (1.5) holds for allτ > 0 when|ν| < µ and, conversely

fails when|ν| > µ unlessτ is restricted so that

arccos[−µ/ν]

τ < τ∗ = τ∗(µ, ν) = √

ν2 − µ2
(1.7)
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(cf., e.g., [1,5]). We will later focus our attention on delay equations of the form (1.
which the nonlinearityf satisfies:

•f :R+ = [0,∞) → R+ is continuous.

• There is a unique equilibrium̄r > 0, soµr̄ = f (r̄) > 0.

•
{

f (r) > µr for 0< r < r̄,

f (r) < µr for all r > r̄.
(1.8)

2. Comparison theorem and consequences

An easy argument then provides the following basic comparison theorem.

Theorem 2. Let f, ξ and correspondinglyg,η be as above withg nondecreasing. Se
x := xf,ξ andy := xg,η.

(1) Supposef � g where relevant(i.e.,f (r) � g(r) for eachr in the range off (x)) and
supposeξ � η on [−τ,0]. Thenx(t) � y(t) for all t .

(2) Supposef � g where relevant andξ � η on [−τ,0]. Thenx(t) � y(t) for all t .

Proof. Both cases go in essentially the same fashion, so we only consider the firs
(with f � g, etc.). Now suppose the result were false. We could then find a larget∗
such thatx(s) � y(s) on [−τ, t∗). For anyt < t∗ + τ we would haver = t − s − τ < t∗
for 0 � s < t whencex(r) � y(r) for suchr sof (x(r)) � g(x(r)) � g(y(r)). It follows
from (1.2) and the corresponding integrated formulation involvingg that x(t) � y(t) for
sucht ∈ [t∗, t∗ + τ) as well, contradicting the definition oft∗. �

We remark that this comparison theorem generalizes to equations in partially o
Banach spaces, etc., but we do not pursue this here.

Corollary 3. Letf, ξ, x be as above in(1.1).

(1) Suppose there is someM > 0 such thatf (r) � µmax{r,M} and supposex � M on
[t∗ − τ, t∗]. Then, alsox(t) � M for all t � t∗.

(2) Suppose there is somem > 0 such thatf (r) � µmin{r,m} and supposex � m on
[t∗ − τ, t∗]. Then, alsox(t) � m for all t � t∗.

Proof. Again, both cases go in essentially the same fashion so we need only consi
first. Further, since we can restart at anyt∗ it is sufficient to considert∗ = 0 so we may
assumeξ � M on [−τ,0].

Takeη ≡ M andg(r) := µmax{r,M}. Clearly,g is nondecreasing and the hypothe
yield ξ � η andf � g. We immediately verify thaty ≡ M satisfies the delay differentia

equation to havey = xg,η so that the result follows from Theorem 2.�
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We will be seeking asymptotic upper and lower bounds for solutionsx(t) of (1.1) and
to this end it is convenient to introduce

m̄ = m̄(x) = lim inf
t→∞ x(t), M̄ = M̄(x) = lim sup

t→∞
x(t). (2.1)

Lemma 4. Letf be bounded with0< f (r) � B. ThenM̄ � B/µ.

Proof. From (1.2) we have

x(t) � e−µtx(0) +
t∫

−τ

Be−µ(t−s) ds,

which gives the desired result ast → ∞. �
We also note some information about theω-limit set of a nontrivial solutionx, e.g., as

used in [10].

Lemma 5. For any bounded solutionx = xf,ξ of (1.1), there are functionsu,v defined
on R such that

(i) u, v satisfy(1.1)onR.

(ii ) m̄ � u(t), v(t) � M̄.

(iii ) u(0) = M̄, u̇(0) = 0; v(0) = m̄, v̇(0) = 0, (2.2)

with m̄ = m̄(x), M̄ = M̄(x) as in(2.1).

For completeness, we sketch a proof here.

Proof. By the definition ofM̄ there is a sequencetk → ∞ such thatx(tk) → M̄ and
we setuk(t) = x(tk + t)—e.g., for t � −tk . The set{uk(·)} is uniformly bounded with
uniformly bounded derivatives, so there is a functionu such thatuk → u uniformly on
compact sets inR. Since the derivatives also converge uniformly on compact subset
eachuk satisfies (1.1), so doesu. Since, for compact setI and anyε > 0, the definition
of M̄ gives m̄ − ε < uk < M̄ + ε for large enoughk, we have (ii) in the limit. Since
uk(0) = x(tk) → M̄ , we haveu(0) = M̄ and, as that is necessarily a maximum, we a
haveu̇(0) = 0. The construction ofv(·) is similar. �

3. Asymptotic bounds and attraction

Theorem 6. Letf , ξ , andx be as above in(1.1).

(1) Suppose there is somer̄ � 0 such that

f (r) � µr̄ for 0< r � r̄ ,
f (r) < µr for all r > r̄. (3.1)
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Then,M̄ � r̄ < ∞ and there is a nonincreasing positive functionz+ such that

x(t) := xf,ξ (t) � z+(t) with z+(t) → r̄ ast → ∞. (3.2)

(2) Suppose there is somer̄ � 0 such that

f (r) � µr̄ for r � r̄ ,

f (r) > µr for all 0< r < r̄. (3.3)

Then,m̄ � r̄ and there is a nondecreasing nonnegative functionz− such that

x(t) := xf,ξ (t) � z−(t) with z−(t) → r̄ ast → ∞. (3.4)

Proof. Yet again, both cases go in essentially the same fashion. For the first case we
by fixing M > r̄ , M � ξ, and anyε = ε0 > 0 with r̄ + ε < M . We then let

γε := max
{
f (r)/r: r̄ + ε � r � M

}
< µ (3.5)

and, choosingγ soγε � γ < µ, set

g(r) = gε(r) := max
{
µ(r̄ + ε), γ r

}
. (3.6)

Now, letλε > 0 satisfy the characteristic equation

λε + γ eλετ = µ (3.7)

and set

y∗(t) := y∗
ε (t) := Me−λεt . (3.8)

If we did not haveξ bounded on[−τ,0], we note thatx is continuous fort � 0 so we
could restart atτ with bounded initial data. Note also that, sincef was assumed continuou
and[r̄ + ε,M] is compact and nonempty, the ‘max’ in (3.5) is achieved andγε < µ.

Moreover, one easily sees that (3.7) has a unique positive solution sinceγ < µ.
The construction yieldsy∗ which satisfies the delay differential equation

ẏ(t) = −µy(t) + γy(t − τ) (3.9)

so, takingη = ηε to be y∗ on [−τ,0], this y∗ must coincide withy = xg,η so long as
y∗(t − τ) � r̄ + δ, whereγ (r̄ + δ) = µ(r̄ + ε). Note that we can—and do—chooseγ close
enough toµ to ensure thatδ � 2ε.

To apply Theorem 2, we note thatg, as given by (3.6), is clearly nondecreasing and
serve that our hypotheses ensure directly thatf (r) � g(r) for r � r̄ and forr̄ � r � r̄ + ε,
while choosingγ � γε ensures thatf (r) � g(r) for r̄ + ε � r � M . Since Corollary 3
ensuresx(t) � M , it follows thatf � g where relevant and thatξ � M � η. Thus, Theo-
rem 2 applies and we havex � y := xg,η—whencex � y∗ as long asy∗ coincides withy.
Noting that this includes an interval of lengthτ on whichy � r̄ + δ � r̄ +2ε, we can apply
Corollary 3 again (now restarting at the end of this interval) to see thatx thereafter remain
below r̄ + 2ε—i.e., we have shown that

x(t) � zε(t) := max{Me−λεt , r̄ + 2ε}
for all t . Since this holds for arbitrarily smallε > 0, we have (3.2), as desired, withz+(t) :=

inf{zε(t): ε > 0}. This completes the proof for the first case.
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Using the second case in Theorem 2, we will get a corresponding lower bound.
however, we note that (1.2) gives

x(τ) = e−µτ x(0) +
0∫

−τ

e−µ(τ+s)f
(
ξ(s)

)
ds,

which will be strictly positive for nonnegative, nontrivialξ—and thenx(t) will be strictly
positive for allt � τ . We can therefore assume, restarting if necessary, thatξ � m for some
m > 0. The rest of the proof is then almost exactly like that for the first case.�
Theorem 7. Letf, ξ, x be as above in(1.1)and suppose there is somer̄ � 0 such that

f (r) > µr for 0< r < r̄,

f (r) < µr for all r > r̄. (3.10)

Suppose, also, that

either f (r) � µr̄ for 0< r < r̄

or f (r) � µr̄ for all r � r̄ . (3.11)

Then,xf,ξ (t) → r̄ as t → ∞ for every nontrivial initial dataξ � 0—i.e.,m̄ = r̄ = M̄ .

Proof. We consider explicitly only the first alternative in (3.11). Since this with (3.
include (3.1), the first case of Theorem 6 applies to giveM̄ � r̄ . If r̄ = 0, we are now
done so we need only show̄m � r̄ when r̄ > 0. For anyε > 0 we can chooseδ > 0 so
f (r) � f (r̄)−µε on [r̄ , r̄ +δ] and there is sometδ such thatx(t) � r̄ +δ for all t � tδ −τ .
Settingr̃ = r̄ − ε, this givesf (r) � µr̃ for r̃ � r � r̄ + δ. Restarting attδ , and noting tha
only values ofr below r̄ + δ are relevant, we thus have the hypotheses for the second
of Theorem 6 for the restarted problem withr̄ replaced byr̃ . Thus,m̄ � r̃ = r̄ − ε for
arbitraryε > 0 som̄ � r̄ . Combining these upper and lower asymptotic bounds is jus
desired result. �

We henceforth will consider equations of the form (1.1) subject to the hypotheses
If max{f (r): r > 0} = B � µr̄ , giving the first case of (3.11), then we already kn
from Theorem 7 that all solutions converge to the equilibriumr̄ , so we will also assum
henceforth thatB > µr̄ with y0 < r̄ : (1.8) then gives (3.10) but we have neither c
of (3.11).

4. Attraction dependent on the delay

As noted, we henceforth assume (1.8):

•f :R+ = [0,∞) → R+ is continuous.

• There is a unique equilibrium̄r > 0, soµr̄ = f (r̄) > 0.

•
{

f (r) > µr for 0< r < r̄,
(4.1)
f (r) < µr for all r > r̄.
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Lemma 8. Assume(4.1). Then, for every nontrivial solutionx of (1.1)we have

e−µτ r̄ � m̄ � r̄ � M̄ � max
e−µτ r̄�r�r̄

f (r)/µ (4.2)

with m̄ = m̄(x), M̄ = M̄(x) as in(2.1).

Proof. From Corollary 3 we knowx is bounded and letu,v be as in Lemma 5. Then, a
u̇(0) = 0= v̇(0),

f
(
u(−τ)

) = µu(0) = µM̄ � µu(−τ)

and, similarly,f (v(−τ)) = µv(0) � µv(−τ). But f (r) > µr if and only if x < r̄ , so
u(−τ) � r̄ � v(−τ). Thus,

v(0) = m̄ � u(−τ) � r̄ � v(−τ) � M̄. (4.3)

Sinceu,v satisfy (1.1) on all of R, we may apply (1.2) witht = 0, a = −τ to get, as
f (·) � 0,

m̄ = v(0) = e−µτ v(−τ) +
0∫

−τ

eµsf
(
x(s − τ)

)
ds � e−µτ v(−τ) � e−µτ r̄

and consequently,u(−τ) � v(0) � e−µτ r̄ . Therefore,

u(0) = f
(
u(−τ)

)
/µ � max

e−µτ r̄�r�r̄
f (r)/µ.

The proof is complete. �
Our next objective is to show global attraction to the equilibrium when the delayτ is

not too large.

Theorem 9. Assume(4.1)and the following pair of one-sided Lipschitz conditions:

0� f (r) − µr̄ � L1(r̄ − r) for e−µτ r̄ � r < r̄,

0� µr̄ − f (r) � L2(r − r̄) for r̄ < r � B. (4.4)

Supposeτ is such that

(1− e−µτ ) <
µ√

L1L2
. (4.5)

Then, every nontrivial solution of(1.1)converges to the equilibrium̄r .

Proof. Let u,v be as in Lemmas 5 and 8. It then follows from (4.3) that there is s
a ∈ [−τ,0] such thatu(a) = r̄ and we set

A = {
s ∈ [a,0] ⊂ [−τ,0]: u(s − τ) � r̄

}
.

Note that fors ∈ [−τ,0] \A we haveu = u(s − τ) > r̄ sof (u) − µr̄ � 0 by (4.1), while
for t ∈A we haveu � r̄ ande−µτ r̄ � m̄ � u from (4.2) in Lemma 8 so (4.4) gives
f (u) − µr̄ � L1(r̄ − u) � L1(r̄ − m̄).
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∫
A

eµs
[
f (u) − µr̄

]
ds � L1(r̄ − m̄)

0∫
−τ

eµt ds = L1(r̄ − m̄)(1− e−µτ ).

Applying (1.2) witht = 0 and thisa, we then have

M̄ − r̄ = [
u(0) − eµau(a)

] + µ

0∫
a

eµs ds =
0∫

a

eµs
[
f

(
u(s − τ)

) − µr̄
]
ds

�
∫
A

eµs
[
f (u) − µr̄

]
ds � L1(r̄ − m̄)(1− e−µτ )/µ.

Somewhat similarly, we have somea ∈ [−τ,0] such thatv(a) = r̄ and now setA = {s ∈
[a,0]: v(s − τ) � r̄}, noting that (4.4) ensures thatf (r) � µr̄ for r ∈ [e−µτ r̄, r̄]. Much as
before we then get

r̄ − m̄ � L2(M̄ − r̄)(1− e−µτ )/µ

and combining gives(r̄ − m̄) � [L1L2(1 − e−µτ )2/µ2](r̄ − m̄). Thus, using the assump
tion (4.5), we havēm = r̄ and thenM̄ = r̄ as well. �

Essentially the same argument gives a localized version when, instead of (4.4) an
we have|f ′| suitably small near̄r .1

5. Another stability result

We now return to the integral formula (1.4), noting that ifx is a solution of (1.1), then
y = x − r̄ is a solution of (1.3) and an appropriate choice ofg:

g(t) = f1
(
y(t − τ)

)
with f1(r) := [

f (r̄ + r) − f (r̄)
] + νr, (5.1)

where, of course, we anticipate takingν = −f ′(r̄) for differentiable functionsf , although
this is not required.

It is worth noting that with this choice ofν we necessarily haveL1,L2 � |f ′(r̄)| = ν

in Theorem 9 so that Lemma 1 suggests that we could not expect asymptotically
convergence to equilibrium whenν > µ if we do not have (1.7); indeed, as we will no
in more detail in the following section, (1.1) will then have a nontrivial periodic solut
Even ignoring the constraint onτ in requiring thatf (r) � µr̄ for r ∈ [e−µτ r̄, r̄], the as-
sumption (4.5) takingL1 = L2 = −f ′(r̄) = ν leads to(1− e−µτ ) < µ/ν or

τ <
1

µ
ln

[
1

1− µ/ν

]
. (5.2)
1 Since we anticipate havingf (0) = 0, this part of (4.4) must be treated as a significant constraint onτ .
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Clearly this, as a sufficient condition for convergence to equilibrium, is the best on
obtain using Theorem 9 and it is interesting to compare with the (necessarily we
condition (1.7). There is obviously a gap between these, and we now seek to handl
mediate delays under appropriate conditions.

Theorem 10. Supposef is a unimodal function andτ > 0 satisfies(1.7)with ν = −f ′(r̄).
Further, suppose∣∣f (r̄ + r) − f (r̄) + νr

∣∣ � L|r| for e−µτ r̄ − r̄ � r � B − r̄ . (5.3)

If f is ‘flat enough near equilibrium’ such that(5.3)holds with

L < 1/‖X‖1, (5.4)

whereX is as in(1.4), then every nontrivial nonnegative solution of(1.1)converges to the
equilibrium r̄ as t → ∞.

Proof. SetM̂ = max{M̄ − r̄ , r̄ − m̄} and, again, letu,v be as in Lemmas 5 and 8. Fir
supposeM̂ = M̄ − r̄ . We then lety(t) = u(t −T )− r̄ soM̂ = u(0)− r̄ = y(T ) with T > 0
arbitrary. We note that̄m � y � M̄ gives |y| � M̂ . Therefore, (5.3) gives|f1(y)| � LM̂

uniformly. Thus, using (1.3) with (5.1), we have

M̂ = y0(T ) +
T∫

0

X(T − s)f1
(
y(s − τ)

)
ds � ȳ0(T ) +

T∫
0

∣∣X(T − s)
∣∣LM̂ ds

� ȳ0(T ) + L‖X‖1M̂ (5.5)

using (1.6) and lettinḡy0 = y0(·; M̂). For the alternative casêM = r̄ − m̄, we lety(t) =
v(t −T )− r̄ and, similarly, again obtain (5.5) for arbitraryT . Sinceȳ0(T ) → 0 asT → ∞,
(5.4) ensures that̂M = 0 sox(t) → r̄ ast → ∞. �

6. Nonconstant periodic solution for large delay

In this section we will use Hopf bifurcation and fixed point theory to prove the exist
of a nonconstant periodic solution when the delayτ is large enough. To see more clea
the effect of delay we letµ = 1. The usual linearized analysis letsx = r̄ + εy and notes
that, to first order inε, the perturbation satisfies

ẏ + y = f ′(r̄)y(· − τ).

Seeking a solution of the formy(t) = exp(λt), we obtain the characteristic equation forλ:

λ + 1= f ′(r)exp(−τλ).

We will have linearized stability if all complex roots of this characteristic equation h
negative real parts. If|f ′(r)| < 1 we have the local convergence to the positive equilibr
for all delays. If|f ′(r)| > 1, the effect of delay will occur. More exactly, in this case wi

1 1

τ > τ∗ = √|f ′(r̄)|2 − 1

arccos
f ′(r̄)
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there is a nonconstant periodic solution of Eq. (1.1).
Atay [1] used the Schauder fixed point theory to prove that there is a nonconstan

odic solution of the equation

ẏ = τh
(
y, y(· − 1)

)
,

provided

τ > τ∗ = 1√
D2 − C2

arccos

(
−C

D

)
,

whereh(u, v) is differentiable at the origin,h(0,0) = 0 and

0< C := −∂h

∂u
(0,0) < D := −∂h

∂v
(0,0).

We lety(t) = x(τ t) − r̄ and

h(u, v) = r̄ − u + f (v + r̄).

Then,

C = 1, D = −f ′(r̄)
and we reproduce

τ∗ = 1√|f ′(r̄)|2 − 1
arccos

1

f ′(r̄)
.

Here, we assume thatf ′(r̄) < −1 and the function arc cosine takes its value in[0,π].

Lemma 11. If a positive solutionx of (1.1)does not oscillate around the positive equil
rium r̄ thenx(t) tends tor̄ as t → ∞. Consequently, every nonconstant positive perio
solution should oscillate around the positive equilibrium.

Proof. If x does not oscillate around̄r , then either

lim sup
t→∞

x(t) � r̄ or lim inf
t→∞ x(t) � r̄ .

From Lemma 8, in the first case, we have lim supx(t) = r̄ . For the second case, we ha
lim inf x(t) = r̄ . So it is enough to consider the second case. Using the proof of Lem
we getr̄ � u(−τ) � v(0) = r̄ . Hence,u(−τ) = r̄ andu(0) = f (u(−τ)) = r̄ . The proof is
now complete. �

Y. Cao [2] proved that forτ � τ∗ there is no periodic solution which is larger thany0
and oscillates slowly around the only positive equilibriumr̄ . For τ > τ∗, there is at mos
one periodic solution which is larger thany0 and oscillates slowly around̄r . Recall that a
T -periodic solution is calledslowly oscillated around the positive equilibrium, if T > τ ,
x(0) = x(T ) = r̄ , and there ist0 ∈ (0, T − τ) such that

x(t0) = r̄ , x(t) > r̄ for t ∈ (0, t0) and x(t) < r̄ for t ∈ (t0, T ).

Cao assumes thatf is decreasing fromy0 < r̄ until f (y0). He also requires that th

function h(x) = xf ′(x)/f (x) is monotonically increasing in[y0, r̄] and decreasing in
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1.1).
ble.
e this.

sio-

ing a

kes the
[r̄ , f (y0)]. Recall thatf (y0) is the maximal value off (y), wheny > 0. Without these
assumptions onh one can construct several slowly oscillated periodic solutions for (
Also, it is known that, if a periodic solution is not oscillated slowly, it should be unsta
Of course, Cao did not prove these results directly, but from his works one can deduc

7. Some applications

Equation (1.1) with unimodalf has been proposed as a model for a variety of phy
logical processes, where in most cases, one of the model functions

f (x) = kxc exp(−x) (7.1)

or

f (x) = kx

1+ xc
, (7.2)

with parametersk > 0 andc > 0, is considered [3,4,9,11–13].
The population dynamics of Nicholson’s blowflies have been studied [9,12] us

functionf of the form (7.1) withc = 1. In such a case,f is differentiable and one has

r̄ = ln
k

µ
, (7.3)

and

ν = −f ′(r̄) = µ

(
ln

k

µ
− 1

)
.

Thus, Theorem 9 yields, using (5.2),

τ <
1

µ
ln

[
ln(k/µ) − 1

ln(k/µ) − 2

]

as a sufficient condition for convergence to equilibriumr̄ given in (7.3), providedk > µe2.
Moreover, there is a nonconstant periodic solution to the model equation if

τ > τ ∗ = 1

µ
√

(ln(k/µ) − 2) ln(k/µ)
arccos

[
1

1− ln(k/µ)

]
,

using (1.7).
In respiratory studies, (1.1) has been employed in which the response function ta

form (7.2). In such a case, one has the positive equilibrium

r̄ =
(

k

µ
− 1

)1/c

, (7.4)

providedk/µ > 1. Then,

ν = −f ′(r̄) = µ

k

[
(c − 1)k − cµ

]
.

Thus, Theorem 9 yields, using (5.2),

1
[
c(1− µ/k) − 1

]

τ <

µ
ln

c(1− µ/k) − 2
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uences.
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of [8].
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land Re-

inear

1996)

tem,

hys.

ech.
as a sufficient condition for convergence to equilibriumr̄ given in (7.4), provided

c

(
1− µ

k

)
> 2.

Moreover, there is a nonconstant periodic solution to the model equation (1.1) withf as in
(7.2) if

τ > τ ∗ = 1

µ
√

c(c(1− µ/k) − 2)(1− µ/k)
arccos

[
1

1− c(1− µ/k)

]
,

using (1.7).

8. Conclusion

We have given a basic comparison theorem and discussed some of their conseq
The effect of delay on the asymptotic behavior has then been studied and the period
positive solutions investigated for large delays. Our discussions allow the nonlineaf

to be nonmonotonic and nondifferentiable which are then more general than those
Thus, our results should be applicable to a wider range of population models; for exa
models arising from the study of an optically bistable device [3,4], blood cells produc
respiration dynamics, or cardiac arrhythmias [11,13]. We can also find application w
system in which the growth function is not smooth, such as a population where g
occurs in birth pulses (during the breeding season) and not continuously througho
year.

Open problem. Investigate the stability of periodic solutions of (1.1) and the structur
ω-limit sets when the delay is large enough!
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