期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:473
On the standing waves of the NLS-log equation with a point interaction on a star graph
Article
Goloshchapova, Nataliia1 
[1] Univ Sao Paulo, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
关键词: Logarithmic nonlinearity;    Nonlinear Schrodinger equation;    Orbital stability;    Spectral instability;    Standing wave;    Star graph;   
DOI  :  10.1016/j.jmaa.2018.12.019
来源: Elsevier
PDF
【 摘 要 】

We study the nonlinear Schrodinger equation with logarithmic nonlinearity on a star graph g. At the vertex an interaction occurs described by a boundary condition of delta type with strength alpha is an element of R. We investigate the orbital stability and the spectral instability of the standing wave solutions e(i omega t)Phi(x) to the equation when the profile Phi(x) has mixed structure (i.e. has bumps and tails). In our approach we essentially use the extension theory of symmetric operators by Krein-von Neumann, and the analytic perturbations theory. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2018_12_019.pdf 445KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:0次