期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:341
Hardy-type theorem for orthogonal functions with respect to their zeros. The Jacobi weight case
Article
Abreu, L. D.2,3  Marcellan, F.1  Yakubovich, S. B.4 
[1] Univ Carlos III Madrid, Dept Math, Leganes 28911, Spain
[2] Univ Coimbra, Dept Math, FCTUC, P-3001454 Coimbra, Portugal
[3] Univ Vienna, Dept Math, NuHag, A-1090 Vienna, Austria
[4] Univ Porto, Fac Sci, Dept Pure Math, P-4169007 Oporto, Portugal
关键词: zeros of special functions;    orthogonality;    Jacobi weights;    Mellin transform on distributions;    entire functions;    Bessel functions;    hyperbessel functions;   
DOI  :  10.1016/j.jmaa.2007.10.050
来源: Elsevier
PDF
【 摘 要 】

Motivated by the G.H. Hardy's 1939 results [G.H. Hardy, Notes on special systems of orthogonal functions 11: On functions orthogonal with respect to their own zeros, J. London Math. Soc. 14 (1939) 37-44] on functions orthogonal with respect to their real zeros lambda(n), n = 1, 2,..., we will consider, under the same general conditions imposed by Hardy, functions satisfying an orthogonality with respect to their zeros with Jacobi weights on the interval (0, 1), that is, the functions f (z) = z(nu) F(z), nu is an element of R, where F is entire and integral(1)(0) f(lambda(n)t)f(lambda(m)t)t(alpha)(1-t)(beta) dt = 0, alpha > -1-2 nu, beta > -1, when n not equal m. Considering all possible functions on this class we obtain a new family of generalized Bessel functions including Bessel and hyperbessel functions as special cases. (C) 2007 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2007_10_050.pdf 141KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次