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Abstract

Motivated by the G.H. Hardy’s 1939 results [G.H. Hardy, Notes on special systems of orthogonal functions II: On functions
orthogonal with respect to their own zeros, J. London Math. Soc. 14 (1939) 37–44] on functions orthogonal with respect to
their real zeros λn, n = 1,2, . . . , we will consider, under the same general conditions imposed by Hardy, functions satisfying
an orthogonality with respect to their zeros with Jacobi weights on the interval (0,1), that is, the functions f (z) = zνF (z), ν ∈ R,
where F is entire and

1∫
0

f (λnt)f (λmt)tα(1 − t)β dt = 0, α > −1 − 2ν, β > −1,

when n �= m. Considering all possible functions on this class we obtain a new family of generalized Bessel functions including
Bessel and hyperbessel functions as special cases.
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1. Introduction

In his 1939 paper [4], G.H. Hardy proved that, under certain conditions, the only functions satisfying

1∫
0

f (λnt)f (λmt) dt = 0

if m �= n, are the Bessel functions.
In order to extend the Hardy’s results to the q-case, it was observed in [1] that a substantial part of the Hardy’s

argument could be carried out without virtually any change, when the measure dt is replaced by an arbitrary positive
measure du(t) supported on the interval (0,1) and functions satisfying

1∫
0

f (λnt)f (λmt) du(t) = 0 (1.1)

if m �= n, are considered.
In particular, the completeness of the set {f (λnt)} holds for such a general orthogonal system. Furthermore, there

exists an associated Lagrange-type sampling theorem for functions defined by integral transforms whose kernel is
defined by means of f [1].

It is however not possible to identify, under such a degree of generalization, the whole class of functions satisfy-
ing (1.1). Therefore, we raise the following question: Given a specific positive real measure on the interval (0,1), what
are the resulting orthogonal functions? In the case where this measure is the dqx arising from the Jackson’s q-integral,
it was shown in [1] that the corresponding functions are the Jackson q-Bessel functions of the third type. In this note
we will answer this question in the case where du(t) = tα(1 − t)β dt is the measure associated with the orthogonal
Jacobi polynomials on the interval (0,1). That is, we will characterize in some sense the functions f (z) = zνF (z),
where ν ∈ R, F is entire, satisfying

1∫
0

f (λnt)f (λmt)tα(1 − t)β dt = 0, α > −1 − 2ν, β > −1, (1.2)

and belonging to the classes A or B defined as follows (the same general restrictions are imposed in [4] and [1]).

Definition 1. Let ν,α ∈ R be such that 2ν + α > −1. The class A is constituted by all entire functions f of order less
than two or of order two and minimal type of the form

f (z) = zν
∞∏

n=1

(
1 − z2

λ2
n

)
.

The class B is constituted by all entire functions f of the form

f (z) = zνF (z),

where F(z) is an entire function with real but not necessarily positive zeros and order less than one or order one and
minimal type, with F(0) = 1.

In this paper we will deal mainly with functions of the class B. Namely, we will show that these functions satisfy
the Abel-type integral equation of the second kind [7] and we will study some relevant properties as well as their
representation in a series expansion. Furthermore, in the last section we will derive a similar integral equation for the
class A and will also give its explicit solutions in terms of the series.

We will appeal in the sequel to the theory of the Mellin transform [6–8]. As it is known the Mellin direct and
inverse transforms are defined by the formulas
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f ∗(s) =
∞∫

0

f (x)xs−1 dx, (1.3)

f (x) = 1

2πi

γ+i∞∫
γ−i∞

f ∗(s)x−s ds, s = γ + iτ, x > 0, (1.4)

where integrals (1.3)–(1.4) exist as Lebesgue ones if we assume the conditions f ∈ L1(R+;xγ−1 dx), f ∗ ∈
L1((γ − i∞, γ + i∞);dτ), respectively. However functions from the classes A or B can have a non-integrable singu-
larity at infinity and the classical Mellin transform (1.3) generally does not exist. Therefore according to [8, Chapter 4]
we introduce the Mellin transform for distributions from the dual space M ′

γ1,γ2
to Zemanian’s testing-function space

Mγ1,γ2 into the space of analytic functions in the open vertical strip Ωf := {s ∈ C: γ1 < Re s < γ2} by the formula

f ∗(s) := 〈
f (x), xs−1〉, s ∈ Ωf . (1.5)

In this case the inversion integral (1.4) is convergent in D′(R+), i.e. for any smooth function θ ∈ D(R+) ⊂ Mγ1,γ2

with compact support on R+ it holds

〈
f (x), θ(x)

〉 = lim
r→∞

〈
1

2πi

γ+ir∫
γ−ir

f ∗(s)x−s ds, θ(x)

〉
. (1.6)

2. The Hardy-type integral equation

Suppose that f ∈ B and satisfies (1.2). Let

An =
1∫

0

[
f (λnt)

]2
tα(1 − t)β dt, α > −1 − 2ν, β > −1.

If an(z) stands for the Fourier coefficients of the expansion of f (zt) in terms of the orthonormal basis {A−1/2
n f (λnt)},

then it is possible to show, following the arguments in [4], that

an(z) = 1

A
1/2
n

1∫
0

f (zt)f (λnt)t
α(1 − t)β dt = A

1/2
n f (z)

f ′(λn)(z − λn)
. (2.1)

In the sequel we will essentially follow the lines of [4], but since considerable number of adaptations have to be made
in order to deal with the presence of the Jacobi weight, we find it better to provide the proof.

Using the Parseval identity for inner products we get

1∫
0

f (zt)f (ζ t)tα(1 − t)β dt =
∞∑

n=1

an(z)an(ζ ). (2.2)

Theorem 1. Let f ∈ B and satisfy (1.2) with α > −1 − 2ν, ν ∈ R, β > −1. Then it satisfies the integral equation

a

z∫
0

uν+α+1(z − u)βf (u)du = (az + 1)

z∫
0

uν+α(z − u)βf (u)du + zν+α+β+1f (z)A, (2.3)

where a = F ′(0), A = −B(2ν + α + 1, β + 1), and B denotes the Beta-function [3].

Proof. Substituting (2.1) into (2.2), we obtain, after some simplifications,



806 L.D. Abreu et al. / J. Math. Anal. Appl. 341 (2008) 803–812
1∫
0

f (zt)f (ζ t)tα(1 − t)β dt = −f (z)f (ζ )
q(z) − q(ζ )

z − ζ
, (2.4)

where

q(z) =
∞∑

n=1

An

{f ′(λn)}2

[
1

z − λn

+ 1

λn

]
.

Letting ζ → 0 in (2.4), the result is

1∫
0

tν+αf (zt)(1 − t)β dt = −f (z)q(z)

z
.

The change of variables u = zt gives

z∫
0

uν+α(z − u)βf (u)du = −zν+α+βf (z)q(z). (2.5)

Now, when z is small enough, f (z) � zν and q(z) ∼ zq ′(0). Therefore, when z → 0 we have

z∫
0

u2ν+α(z − u)β du ∼ −z2ν+α+β+1q ′(0)

and, as a consequence,

q ′(0) = −B(2ν + α + 1, β + 1).

Rewriting (2.4) in the form

1∫
0

t2ν+αF (zt)F (ζ t)(1 − t)β dt = −F(z)F (ζ )
q(z) − q(ζ )

z − ζ

and differentiating in ζ we obtain

1∫
0

t2ν+α+1F ′(ζ t)F (zt)(1 − t)β dt = −F(z)F ′(ζ )
q(z) − q(ζ )

z − ζ
− F(z)F (ζ )

−q ′(ζ )(z − ζ ) + q(z) − q(ζ )

(z − ζ )2
.

Setting ζ = 0, it gives

F ′(0)

1∫
0

tν+α+1(1 − t)βf (zt) dt = −f (z)

z2

[
q(z)

(
F ′(0)z + 1

) − Az
]
.

So, if a = F ′(0), the change of variable zt = u yields

a

z∫
0

uν+α+1(z − u)βf (u)du = −zν+α+βf (z)
[
(za + 1)q(z) − Az

]
.

Combining with (2.5) we get the integral equation (2.3). �
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3. The Hardy-type theorem

In this section we will prove the Hardy-type theorem [4], which will characterize all possible orthogonal functions
with respect to their zeros from the class B under the Jacobi weight. Indeed, we have

Theorem 2. Let f satisfy conditions of Theorem 1. Then

f (z) = const. zν

∞∑
n=0

anz
n, (3.1)

where

an = (a(β + 1))n

�(μ + n)

n∏
j=1

(μ)j

(μ + β + 1)j − (μ)j
, n = 0,1, . . . . (3.2)

Here μ = 2ν + α + 1, �(z) is Euler’s Gamma-function, (b)j is the Pochhammer symbol [3], and the empty product
is equal to 1. Moreover, the series (3.1) represents an entire function of the order ρ = 1

β+2 < 1, when β > −1.
In particular, the case β = 0 leads to the Hardy solutions in terms of the Bessel functions (cf. [4, p. 43]).

Proof. Making again an elementary substitution u = zt and simplifying the factor zν+α+β+1 we write (2.3) in the
form

az

1∫
0

tν+α+1(1 − t)βf (zt) dt = (az + 1)

1∫
0

tν+α(1 − t)βf (zt) dt − B(2ν + α + 1, β + 1)f (z). (3.3)

Hence we observe that (3.3) is a second kind integral equation containing two Erdélyi–Kober fractional integration
operators with linear coefficients (see [7, Chapter 3]). In order to find a solution in terms of the series zν

∑∞
n=0 anz

n

where an �= 0, a0 = 1, and such that no two consecutive an vanish (see [4, p. 43]) we substitute it in (3.3). After
changing the order of integration and summation because of the uniform convergence, from the calculation of the
inner Beta-integrals and some elementary substitutions we get

a

∞∑
n=1

an−1z
n+ν

[
B(μ + n,β + 1) − B(μ + n − 1, β + 1)

]

=
∞∑

n=1

anz
n+ν

[
B(μ + n,β + 1) − B(μ,β + 1)

]
, μ = 2ν + α + 1. (3.4)

Hence equating coefficients of the series and taking into account that B(μ + n,β + 1) − B(μ,β + 1) �= 0, n ∈ N,
μ > 0, β > −1 we obtain the following recurrence relations:

an = aan−1
B(μ + n,β + 1) − B(μ + n − 1, β + 1)

B(μ + n,β + 1) − B(μ,β + 1)

= an
n∏

j=1

B(μ + j,β + 1) − B(μ + j − 1, β + 1)

B(μ + j,β + 1) − B(μ,β + 1)
, (3.5)

where n ∈ N0 and the empty product is equal to 1. Finally, we use the formulas

(b)k = �(b + k)

�(b)
, �(z + 1) = z�(z), B(b, c) = �(b)�(c)

�(b + c)

in order to write (3.5) in the form (3.2).
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Further, from (3.5) and the asymptotic formula for the ratio of Gamma-functions [3] we get∣∣∣∣ an

an−1

∣∣∣∣ =
∣∣∣∣aB(μ + n,β + 1) − B(μ + n − 1, β + 1)

B(μ + n,β + 1) − B(μ,β + 1)

∣∣∣∣
= |a|�(β + 2)�(μ + n − 1)

�(μ + n + β + 1)[B(μ,β + 1) − B(μ + n,β + 1)]
= O

(
n−(β+2)

) → 0, n → ∞, β > −1.

Thus F(z) = ∑∞
n=0 anz

n is an entire function. Let us compute its order ρ. This can be done directly from its series
coefficients

ρ = lim sup
n→∞

n logn

log |an|−1
= lim

n→∞
(n + 1) log(n + 1) − n logn

log |an+1|−1 − log |an|−1

= lim
n→∞

logn

lognβ+2
= 1

β + 2
< 1, β > −1.

The same arguments as in [4] guarantee that all our solutions belong to the class B. In particular, for β = 0 we easily
get from (3.2) that

an = an

�(μ + n)

n∏
j=1

(μ)j

(μ + 1)j − (μ)j
= (aμ)n

�(μ + n)n! , n = 0,1, . . . .

Then the series representation for the Bessel function [3] yields

f (z) = const. z−α/2Jμ−1
(
cz1/2), c2 = −4aμ,

which slightly generalizes Hardy’s solutions [4, p. 43]. Thus Theorem 2 is proved. �
4. Properties of solutions and their particular cases

First in this section we will apply the Mellin transform (1.5) to the integral equation (2.3), reducing it to a certain
functional equation. Then we will solve this equation by methods of the calculus of finite differences [5] to obtain the
value of the Mellin transform for solutions (3.1).

In fact, returning to (3.3) we consider z = x ∈ R+ and we apply through the Mellin transform (1.5) taking into
account the operational formula〈

f (xt), xs−1〉 = t−sf ∗(s).

Then using values of the elementary Beta-integrals we deduce the following homogeneous functional equation:

aB(ν + α − s + 1, β + 1)f ∗(s + 1) = aB(ν + α − s, β + 1)f ∗(s + 1) + B(ν + α − s + 1, β + 1)f ∗(s)
− B(2ν + α + 1, β + 1)f ∗(s), (4.1)

where s is a parameter of the Mellin transform (1.5) such that s +1 ∈ Ωf . Hence denoting by h(s) = B(ν +α − s +1,

β + 1) and invoking the condition a �= 0 (see [4, p. 43]) we rewrite (4.1) as

f ∗(s + 1) = H(s)f ∗(s), (4.2)

where the kernel H(s) is given by

H(s) = 1

a

h(s) − h(−ν)

h(s) − h(s + 1)
. (4.3)

We can simplify H(s) appealing to the basic properties for Beta-functions [3]. After straightforward calculations we
get finally

H(s) = (s − ν − α)(h(s) − h(−ν))
. (4.4)
a�(β + 2)h(s)
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Meanwhile,

h(s) − h(−ν) =
1∫

0

(1 − t)β
(
tν+α−s − t2ν+α

)
dt

=
∞∑

n=0

(−β)n

n!
[

1

ν + α − s + n + 1
− 1

2ν + α + n + 1

]
= (ν + s)χ(s),

where

χ(s) =
∞∑

n=0

(−β)n

n!(2ν + α + n + 1)(ν + α + n + 1 − s)
.

Notice that χ(s) and h(s) have the same simple poles at the points s = ν +α +n+1, n = 0,1, . . . . As a consequence,
taking into account the expression of h(s) in terms of Gamma-functions, we find that H(s) is meromorphic with
simple poles s = ν + α + β + n + 2, n ∈ N0. Furthermore, from the asymptotic behavior of the Beta-function [3], we
get H(s) = O(sβ+2), s → ∞.

The functional equation (4.2) can be formally solved using the methods proposed in [5, Chapter 11]. So it has a
general solution

f ∗(s) = ω(s) exp

(
s∑
c

logH(z)�z

)
, (4.5)

where ω(s) is an arbitrary periodic function of s with period 1,
∑s

c means the operation of general summation [5]
with a given constant c, and the function logH(s) is summable in this sense (cf. [5, Chapter 8]). Clearly that it may
be necessary to make suitable cuts in the s-plane according to the possible multi-valued nature of the right-hand side
of (4.5).

Let us consider some interesting particular cases of the solutions (3.1) when β = k ∈ N0. Indeed, putting β = k

in (3.2) and using the definition of the Pochhammer’s symbol we obtain

(μ + k + 1)j

(μ)j
− 1 = �(μ + k + j + 1)

�(μ + k + 1)(μ)j
− 1 = (μ)k+j+1

(μ)k+1(μ)j
− 1

= (μ + j)(μ + j + 1) . . . (μ + k + j)

(μ)k+1
− 1 = jPk(j)

(μ)k+1
,

where we denote by Pk(j) = (j − α1) . . . (j − αk), αi ∈ C, i = 1, . . . , k, a polynomial of degree k with respect to j

and, evidently, Pk(j) > 0, j ∈ N. Substituting the above expression in (3.2) it becomes

an = (a(k + 1)(μ)k+1)
n

�(μ + n)n!
n∏

j=1

k∏
i=1

1

j − αi

, n, k ∈ N0, (4.6)

and the empty products are equal to 1. As a consequence, the solutions (3.1) represent the so-called hyperbessel
functions [7, Chapter 19] of the order k + 1, namely

f (z) = const. zν
0Fk+1

(
2ν + α + 1,1 − α1, . . . ,1 − αk;a(k + 1)(2ν + α + 1)k+1z

)
, k ∈ N0. (4.7)

As it is known [7] functions

F(z) = 0Fk+1
(
2ν + α + 1,1 − α1, . . . ,1 − αk; a(k + 1)(2ν + α + 1)k+1z

)
in (4.7) satisfy the following (k + 2)th-order linear differential equation:

d

dz

(
z

d

dz
+ 2ν + α

) k∏
i=1

(
z

d

dz
− αi

)
F − a(k + 1)(2ν + α + 1)k+1F = 0. (4.8)
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Remark 1. We point out that in [2] the authors considered other generalizations of the Bessel functions which also
satisfy higher order linear differential equations.

Remark 2. In particular, for k = 0 we easily get the Hardy’s solutions in terms of the 0F1-functions and strictly we
prove their orthogonality (1.2) by using the corresponding second-order linear differential equation (4.8). However,
even for k = 1 the direct proof of the orthogonality property (1.2) for solutions (4.7) is a difficult task since we
deal in this case with the third-order linear differential equation. As we are aware, the orthogonality property for the
hyperbessel functions with respect to their zeros is yet unknown. So, following the conclusions of Theorem 2 we
conjecture here this fact as well as the orthogonality for all solutions (3.1) of the class B.

5. Orthogonal functions of the class A

In the case f ∈ A we recall again the arguments in [4] to write accordingly, the formula for the Fourier coefficients
an(z) of f (zt) (see (2.1)) as

an(z) = 2A
1/2
n λn

f ′(λn)

f (z)

z2 − λ2
n

. (5.1)

We have

Theorem 3. If f ∈A and satisfy (1.2) with α > −1 − 2ν, ν ∈ R, β > −1, then the integral equation holds

a

z∫
0

uν+α+2(z − u)βf (u)du = (
az2 + 2

) z∫
0

uν+α(z − u)βf (u)du + zν+α+β+1f (z)A, (5.2)

where a = F ′′(0) and A = −2B(2ν + α + 1, β + 1).

Proof. As in the proof of Theorem 1 we substitute (5.1) in (2.2) and we get the equality

1∫
0

f (zt)f (ζ t)tα(1 − t)β dt = −f (z)f (ζ )
q(z) − q(ζ )

z2 − ζ 2
, (5.3)

where now

q(z) = 4
∞∑

n=1

Anλ
2
n

{f ′(λn)}2

[
1

z2 − λ2
n

+ 1

λ2
n

]
.

Letting ζ → 0 in (5.3), we obtain

1∫
0

tνf (zt)tα(1 − t)β dt = −f (z)q(z)

z2
,

which yields after the change u = zt ,

z∫
0

uν+α(z − u)βf (u)du = −zν+α+β−1f (z)q(z). (5.4)

When z is small enough, f (z) � zν and q(z) ∼ z2

2 q ′′(0). Therefore, as z → 0 we get

2

z∫
u2ν+α(z − u)β du ∼ −z2ν+α+β+1q ′′(0).
0
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Thus q ′′(0) = −2B(2ν + α + 1, β + 1) = A. If we rewrite (5.3) in the form

1∫
0

t2ν+αF (zt)F (ζ t)(1 − t)β dt = −F(z)F (ζ )
q(z) − q(ζ )

z2 − ζ 2
,

then after differentiation with respect to ζ we get

1∫
0

t2ν+α+1F ′(ζ t)F (zt)(1 − t)β dt = −F(z)F ′(ζ )
q(z) − q(ζ )

z2 − ζ 2

− F(z)F (ζ )
−q ′(ζ )(z2 − ζ 2) + 2ζ(q(z) − q(ζ ))

(z2 − ζ 2)2
.

Differentiating again with respect to ζ and setting ζ = 0, we deduce after some simplifications

F ′′(0)

1∫
0

tν+α+2(1 − t)βf (zt) dt = −f (z)

[
F ′′(0)q(z)

z2
− A

z2
+ 2q(z)

z4

]
.

Letting a = F ′′(0) and making the change zt = u we obtain the equation

a

z∫
0

uν+α+2(z − u)βf (u)du = −zν+α+β−1f (z)
[(

z2a + 2
)
q(z) − Az2].

Taking into account (5.4) we finally obtain the integral equation (5.2). �
An analog of the Hardy theorem for the class A is

Theorem 4. Let f satisfy the conditions of Theorem 3. Then

f (z) = const. zν
∞∑

n=0

a2nz
2n, (5.5)

where

a2n =
(

a(β + 1)

2

)n n∏
j=1

(β + 2(μ + 2j − 1))(μ)2(j−1)

(μ + β + 1)2j − (μ)2j

, n = 0,1, . . . ,

μ = 2ν + α + 1 and the empty product is equal to 1.

Proof. The substitution u = zt and the value of A reduce Eq. (5.2) to

az2

1∫
0

tν+α
(
t2 − 1

)
(1 − t)βf (zt) dt = 2

[ 1∫
0

tν+α(1 − t)βf (zt) dt − f (z)B(2ν + α + 1, β + 1)

]
. (5.6)

Since the case f ∈A presumes the following series representation:

f (z) = const. zν
∞∑

n=0

a2nz
2n,

with a2n �= 0 for any n ∈ N0, we substitute it into (5.6), change the order of integration and summation, and calculate
the inner Beta-integrals. Therefore denoting by μ = 2ν + α + 1 we obtain
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a

∞∑
n=1

a2(n−1)z
2n

[
B(μ + 2n,β + 1) − B

(
μ + 2(n − 1), β + 1

)]

= 2
∞∑

n=1

a2nz
2n

[
B(μ + 2n,β + 1) − B(μ,β + 1)

]
.

Hence equating coefficients of the series the following recurrence relations appear

a2n = a

2
a2(n−1)

B(μ + 2n,β + 1) − B(μ + 2(n − 1), β + 1)

B(μ + 2n,β + 1) − B(μ,β + 1)

=
(

a

2

)n n∏
j=1

B(μ + 2j,β + 1) − B(μ + 2(j − 1), β + 1)

B(μ + 2j,β + 1) − B(μ,β + 1)
, (5.7)

where n = 0,1,2, . . . , and the empty product is equal to 1. In the same way as (3.2) it can be written in the form

a2n =
(

a(β + 1)

2

)n n∏
j=1

(β + 2(μ + 2j − 1))(μ)2(j−1)

(μ + β + 1)2j − (μ)2j
, n = 0,1, . . . . �

Putting β = 0 in (5.7) by straightforward calculations the functions (5.5) become

f (z) = const. z
1−α

2 Jμ
2 −1

(
(−aμ)1/2z

)
,

which slightly generalizes the Hardy’s solutions [4, p. 42].
It is easily seen that the series in (5.5) is an entire function. Finally we compute the order of these solutions. Using

the same arguments as in Theorem 2 we have

ρ = lim sup
n→∞

2n log 2n

log |a2n|−1
= lim

n→∞
2(n + 1) log 2(n + 1) − 2n log 2n

log |a2(n+1)|−1 − log |a2n|−1

= lim
n→∞

2 logn

lognβ+2
= 2

β + 2
< 2, β > −1.

Therefore all solutions belong to the class A.

Remark 3. Our final conjecture is that the solutions f ∈ A of the Hardy-type integral equation (5.2) are orthogonal
with respect to their own zeros for the Jacobi weight.
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