期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:360
Pointwise universal trigonometric series
Article
Shkarin, S.
关键词: Universal series;    Trigonometric series;    Power series;   
DOI  :  10.1016/j.jmaa.2009.07.004
来源: Elsevier
PDF
【 摘 要 】

A series S(alpha) = Sigma(infinity)(n)=-infinity 0a(n)z(n) is called a pointwise universal trigonometric series if for any f is an element of C(T), there exists a strictly increasing sequence (n(k))(k is an element of N) of positive integers such that Sigma(nk)(j)=-n(k) a(j)Z(j) converges to f(z) pointwise on T. We find growth conditions on coefficients allowing and forbidding the existence of a pointwise universal trigonometric series. For instance, if |a(n)| =O(e|n|[n(-1-epsilon) |n|) as |n|) -> infinity for some epsilon > 0, then the series S(a) cannot be pointwise universal. On the other hand, there exists a pointwise universal trigonometric series S(a) with |a(n)| = O(e|n|(ln-1) |n|) as |n| -> infinity. (C) 2009 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2009_07_004.pdf 171KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次