期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:377
Strong annihilating pairs for the Fourier-Bessel transform
Article
Ghobber, Saifallah2,3  Jaming, Philippe1,2 
[1] Univ Bordeaux 1, Inst Math Bordeaux, UMR 5251, Cours Liberat, F-33405 Talence, France
[2] Univ Orleans, Fac Sci, MAPMO Federat Denis Poisson, F-45067 Orleans 2, France
[3] Univ Tunis El Manar, Fac Sci Tunis, Dept Math, Tunis 1060, Tunisia
关键词: Fourier-Bessel transform;    Hankel transform;    Uncertainty principle;    Annihilating pairs;   
DOI  :  10.1016/j.jmaa.2010.11.015
来源: Elsevier
PDF
【 摘 要 】

The aim of this paper is to prove two new uncertainty principles for the Fourier-Bessel transform (or Hankel transform). The first of these results is an extension of a result of Amrein, Berthier and Benedicks, it states that a non-zero function f and its Fourier-Bessel transform F-alpha(f) cannot both have support of finite measure. The second result states that the supports of f and F-alpha(f) cannot both be (epsilon, alpha)-thin, this extending a result of Shubin, Vakilian and Wolff. As a side result we prove that the dilation of a C-0-function are linearly independent. We also extend Faris's local uncertainty principle to the Fourier-Bessel transform. (C) 2010 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2010_11_015.pdf 233KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次