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The aim of this paper is to prove two new uncertainty principles for the Fourier–Bessel
transform (or Hankel transform). The first of these results is an extension of a result of
Amrein, Berthier and Benedicks, it states that a non-zero function f and its Fourier–Bessel
transform Fα( f ) cannot both have support of finite measure. The second result states
that the supports of f and Fα( f ) cannot both be (ε,α)-thin, this extending a result of
Shubin, Vakilian and Wolff. As a side result we prove that the dilation of a C0-function
are linearly independent. We also extend Faris’s local uncertainty principle to the Fourier–
Bessel transform.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The uncertainty principle is an essential restriction in Fourier analysis. Roughly speaking, this principle states that a
function and its Fourier transform cannot be simultaneously well concentrated. There are numerous mathematical formula-
tions for this principle as well as extensions to other transforms (e.g. Fourier type transforms on various types of Lie groups,
other integral transforms . . . ) and we refer to the book [9] and the surveys [8,4] for further references. Our aim here is
to consider uncertainty principles in which concentration is measured in sense of smallness of the support and when the
transform under consideration is the Fourier–Bessel transform (also known as the Hankel transform). This transform arises
as e.g. a generalization of the Fourier transform of a radial integrable function on Euclidean d-space as well as from the
eigenvalues expansion of a Schrödinger operator.

Let us now be more precise and describe our results. To do so, we need to introduce some notations. Throughout
this paper, α will be a real number, α > −1/2. For 1 � p < +∞, we denote by L p

α(R+) the Banach space consisting of
measurable functions f on R

+ equipped with the norm

‖ f ‖L p
α

=
( ∞∫

0

∣∣ f (x)
∣∣p

dμα(x)

)1/p

,
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where dμα(x) = (2π)α+1x2α+1 dx. For f ∈ L1
α(R+), the Fourier–Bessel (or Hankel) transform is defined by

Fα( f )(y) =
∞∫

0

f (x) jα(2πxy)dμα(x),

where jα is the Bessel function given by

jα(x) = Jα(x)

xα
:= 1

2α

∞∑
n=0

(−1)n

n!Γ (n + α + 1)

(
x

2

)2n

.

Note that Jα is the Bessel function of the first kind and Γ is the gamma function. The function jα is even and infinitely
differentiable (also entire analytic). One may show that the Fourier–Bessel transform extends to an isometry on L2

α(R+) i.e.∥∥Fα( f )
∥∥

L2
α

= ‖ f ‖L2
α
.

Uncertainty principles for the Fourier–Bessel transform have been considered in various places, e.g. [3,14] for a Heisen-
berg type inequality or [17] for Hardy type uncertainty principles when concentration is measure in terms of fast decay. We
will here concentrate on uncertainty principles where concentration is measured in terms of smallness of support. Our first
result (Proposition 3.1) is a straightforward extension of Faris’s local uncertainty principle to the Fourier–Bessel transform
which compares the L2

α-norm of Fα( f ) on some set E of finite measure to weighted norms of f (see Proposition 3.1 for
details).

Our main concern here are uncertainty principles of the following type: a function and its Fourier–Bessel transform cannot
both have small support. In other words we are interested in the following adaptation of a well-known notion from Fourier
analysis:

Definition. Let S , Σ be two measurable subsets of R
+ . Then

• (S,Σ) is a weak annihilating pair if, supp f ⊂ S and supp Fα( f ) ⊂ Σ implies f = 0.
• (S,Σ) is called a strong annihilating pair if there exists C = Cα(S,Σ) such that

‖ f ‖L2
α

� C
(‖ f ‖L2

α(Sc) + ∥∥Fα( f )
∥∥

L2
α(Σc)

)
, (1.1)

where Ac = R
+\A. The constant Cα(S,Σ) will be called the α-annihilation constant of (S,Σ).

Of course, every strong annihilating pair is also a weak one. There are several examples of the uncertainty principle of
the form (1.1) for the Euclidean Fourier transform. One of them is the Amrein–Berthier theorem [1] which is a quantitative
version of a result due to Benedicks [2] showing that a pair of sets of finite measure is an annihilating pair. It is interesting
to note that, when f ∈ L2(Rd) the optimal estimate of C , which depends only on measures |Sd| and |Σd|, was obtained
by F. Nazarov [11] (d = 1), while in higher dimension the question is not fully settled unless either S or Σ is convex (see
the second author’s paper [10] for the best result today). Our first result will be the following adaptation of the Benedicks–
Amrein–Berthier uncertainty principle:

Theorem A. Let S, Σ be a pair of measurable subsets of R
+ with μα(S),μα(Σ) < +∞. Then the pair (S,Σ) is a strong annihilating

pair.

We will actually show a slightly stronger result, namely that a pair of sets with finite Lebesgue measure is strongly
annihilating. The proof of this theorem is an adaptation of the proof for the Euclidean Fourier transform in [1]. In [1], the
fact that the Fourier transform intertwines translations and modulations plays a key role. This property is no longer available
for the Fourier–Bessel transform but we have been able to replace translations by dilations. As a side result, we prove that
the dilates of a C0-function are linearly independent.

Another uncertainty principle which is of particular interest to us is the Shubin–Vakilian–Wolff theorem [15, Theo-
rem 2.1], where so-called ε-thin sets are considered. The natural notion of ε-thin sets for the Fourier–Bessel transform is
the following:

Definition. A set S ⊂ R
+ will be called (ε,α)-thin if, for 0 � x � 1,

μα

(
S ∩ [x, x + 1]) � εμα

([x, x + 1])
and for x > 1,

μα

(
S ∩

[
x, x + 1

x

])
� εμα

([
x, x + 1

x

])
.
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We adapt the proof of [15] to show the following theorem:

Theorem B. If ε is small enough and S and Σ are (ε,α)-thin then

‖ f ‖L2
α

� C
(‖ f ‖L2

α(Sc) + ∥∥Fα( f )
∥∥

L2
α(Σc)

)
,

where C is a constant that depends only on ε and α.

The structure of the paper is as follows: in the next section we introduce some further notations as well as some
preliminary results. In Section 3 we prove the local uncertainty inequality for the Fourier–Bessel transform. Section 4 is
devoted to the proof of our Amrein–Berthier–Benedicks type theorem and in Section 5 we conclude with our Shubin–
Vakilian–Wolff type result, Theorem B.

2. Preliminaries

2.1. Generalities

In this section, we will fix some notations. We will denote by |x| and 〈x, y〉 the usual norm and scalar product on R
d .

The unit sphere of R
d is denoted by S

d−1 and we endow it with the (non-normalized) Lebesgue measure dσ , that is
rd−1 dr dσ(ζ ) is the polar decomposition of the Lebesgue measure. The Fourier transform is defined for F ∈ L1(Rd) by

F̂ (ξ) =
∫
Rd

F (x)e−2iπ 〈x,ξ〉 dx.

Note that ‖ F̂‖2 = ‖F‖2 and the definition of the Fourier transform is extended from F ∈ L1(Rd) ∩ L2(Rd) to L2(Rd) in
the usual way. With these normalizations, if F (x) = f (|x|) is a radial function on R

d , then F̂ (ξ) = Fd/2−1( f )(|ξ |). More
generally, if F (x) = Fk(|x|)Hk(x), Hk a spherical harmonic of degree k (so that F (rζ ) = rk Fk(r)Hk(ζ ), r > 0, ζ ∈ S

d−1), then
the Funk–Hecke formula leads to F̂ (ξ) = ik Fd/2+k−1(Fk)(|ξ |)Hk(ξ), see [16, Chapter IV.2] for details.

If Sd is a measurable set in R
d , we will write |Sd| for its Lebesgue measure.

For α > −1/2, let us recall the Poisson representation formula

jα(x) = 1

2αΓ (α + 1
2 )Γ ( 1

2 )

1∫
−1

(
1 − s2)α cos sx

ds√
1 − s2

.

Therefore, jα is bounded with | jα(x)| � jα(0) = 1
2αΓ (α+1)

. As a consequence,

∥∥Fα( f )
∥∥∞ � 1

2αΓ (α + 1)
‖ f ‖L1

α
. (2.2)

Here ‖.‖∞ is the usual essential supremum norm.
From the well-known asymptotic behavior of the Bessel function, we deduce that there is a constant κα such that∣∣ jα(t)

∣∣ � καt−α−1/2. (2.3)

Further, Fα extends to a unitary operator on L2
α , ‖Fα( f )‖L2

α
= ‖ f ‖L2

α
. Finally, if Fα( f ) ∈ L1

α(R+), the inverse Fourier–
Bessel transform, is defined for almost every x by

f (x) =
∞∫

0

Fα( f )(y) jα(2πxy)dμα(y).

Finally, if I is an interval, I = [a,b] ⊂ R
+ then 3I is the interval with the same center as I and “triple” length, 3I =

[a − (b − a),b + (b − a)] ∩ R
+ . A simple computation shows that the measure μα is doubling: there exists a constant Cα

such that, for every interval I ⊂ R
+ , μα(3I) � Cαμα(I).

2.2. Generalized translations

Following Levitan [5], for any function f ∈ C2(R+) we define the generalized Bessel translation operator

T α
y f (x) = u(x, y), x, y ∈ R

+,
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as a solution of the following Cauchy problem:(
d2

dx2
+ 2α + 1

x

d

dx

)
u(x, y) =

(
d2

dy2
+ 2α + 1

y

d

dy

)
u(x, y),

with initial conditions u(x,0) = f (x) and ∂
∂x u(x,0) = 0. Here d2

dx2 + 2α+1
x

d
dx is the differential Bessel operator. The solution

of this Cauchy problem can be written out in explicit form:

T α
x ( f )(y) = Γ (α + 1)√

πΓ (α + 1/2)

π∫
0

f
(√

x2 + y2 − 2xy cos θ
)
(sin θ)2α dθ. (2.4)

By formula (2.4), the operator T α
x can be extended to all functions f ∈ L p

α(R+).
The operator T α

x can be also written by the formula

T α
x ( f )(y) =

∞∫
0

f (t)W (x, y, t)dμα(t),

where W (x, y, t)dμα(t) is a probability measure and W (x, y, t) is defined by

W (x, y, t) =
{

2−3αΓ (α+1)√
πΓ (α+ 1

2 )


(x,y,t)2α−1

(xyt)2α if |x − y| < t < x + y,

0 otherwise

where


(x, y, t) = (
(x + y)2 − t2)1/2(

t2 − (x − y)2)1/2

is the area of the triangle with side length x, y, t . Thus for reasonable functions f , g , we have

∞∫
0

f (y)T α
x (g)(y)dμα(y) =

∞∫
0

g(y)T α
x ( f )(y)dμα(y). (2.5)

Further, W (x, y, t)dμα(t) is a probability measure, so that for p � 1, |T α
x f |p � T α

x | f |p thus ‖T α
x f ‖Lp

α(R+) � ‖ f ‖Lp
α(R+) .

The Bessel convolution f ∗α g of two reasonable functions f , g is defined by

f ∗α g(x) =
∞∫

0

f (t)T α
x (g)(t)dμα(t).

Then (2.5) reads f ∗α g = g ∗α f . It is also well known that for λ > 0, T α
x jα(λ.)(y) = jα(λx) jα(λy). Therefore,

Fα

(
T α

x f
)
(y) = jα(2πxy)Fα( f )(y)

and

Fα( f ∗α g)(x) = Fα( f )(x)Fα(g)(x).

Note also that if f is supported in [0,b] then Tx f is supported in [0,b + x].

2.3. Linear independence of dilates

In this section we will prove that the dilation of a C0-function are linearly independent, this result may be of independent
interest and plays a key role in the proof of Theorem 4.3. Let us first introduce the dilation operator δλ , λ > 0, defined by:

δλ f (x) = 1

λα+1
f

(
x

λ

)
.

It is interest to notice that Fαδλ = δ 1
λ

Fα .

We may now prove the following lemma which is inspired by a similar result in [6] for translations.

Lemma 2.1. Any non-zero continuous function on [0,+∞) such that limx→+∞ f (x) = 0 has linearly independent dilates.
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Proof. Suppose that there are some distinct elements λ1, . . . , λn ∈ R
+\{0} and scalars c1, . . . , cn ∈ C satisfying

n∑
k=1

ck f

(
x

λk

)
= 0. (2.6)

Assume towards a contradiction that one of the scalars ck is non-zero. Write x = es and 1
λk

= eμk with μk, s ∈ R. Then
Eq. (2.6) is equivalent to

n∑
k=1

ck g(μk + s) = 0, (2.7)

where g(x) = f (ex) is a continuous bounded function on R and limx→+∞ g(x) = 0. We will denote by ĝ the distributional
Fourier transform of g . Note that, as g is bounded, ĝ is a distribution of order 0.

The distributional Fourier transform of Eq. (2.7) implies(
n∑

k=1

cke2iπμks

)
ĝ = 0.

As
∑n

k=1 cke2iπμks is an entire function, its zero set is discrete, therefore ĝ has a discrete support. Assume s0 ∈ supp ĝ ,
and let η > 0 be such that ]s0 − η, s0 + η[ ∩ supp ĝ = {s0}. Let ϕ ∈ C∞(R) with support in ]s0 − η, s0 + η[ and such that
ϕ = 1 on ]s0 − η/2, s0 + η/2[. Then ĝϕ is a distribution of order 0 such that supp ĝϕ = {s0}. It follows that ĝϕ = cδs0 for
some c ∈ C. But then g ∗ ϕ̌ = ce2iπ s0t , where ϕ̌ is the inverse Fourier transform of ϕ . As ϕ̌ ∈ S(R), one easily checks that
limt→+∞ g(t) = 0 implies that limx→+∞ g ∗ ϕ̌(x) = 0, thus c = 0. It follows that supp ĝ = ∅ which implies f ≡ 0. �
3. Local uncertainty inequalities

Heisenberg’s inequality for the Fourier–Bessel transform has been established in [14] as follows:

‖xf ‖L2
α

∥∥xFα( f )
∥∥

L2
α

� (α + 1)‖ f ‖2
L2
α
.

It says that if f is highly localized, then Fα( f ) cannot be concentrated near a single point, but it does not preclude Fα( f )
from being concentrated in a small neighborhood or more widely separated points. In fact, the latter phenomenon cannot
occur either, and it is the object of local uncertainty inequality to make this precise. The first such inequalities for the
Fourier transform were obtained by Faris [7], and they were subsequently sharpened and generalized by Price [12,13]. The
corresponding result for the Fourier–Bessel transform is given in the following proposition:

Proposition 3.1.

(1) If 0 < s < α + 1, there is a constant K = K (s,α) such that for every f ∈ L2
α(R+) and every measurable set E ⊂ R

+ of finite
measure μα(E) < +∞,∥∥Fα( f )

∥∥
L2
α(E)

� K
[
μα(E)

] s
2(α+1)

∥∥xs f
∥∥

L2
α
. (3.8)

(2) If s > α + 1, there is a constant K ′ = K ′(s,α) such that for every f ∈ L2
α(R+) and every measurable set E ⊂ R

+ of finite measure
μα(E) < +∞,∥∥Fα( f )

∥∥
L2
α(E)

� K ′μα(E)1/2‖ f ‖1− (α+1)
s

L2
α

∥∥xs f
∥∥ α+1

s

L2
α

. (3.9)

Proof. As for the first part take r > 0 and let χr = χ{x: 0�x<r} and χ̃r = 1 − χr . We may then write∥∥Fα( f )
∥∥

L2
α(E)

= ∥∥Fα( f )χE
∥∥

L2
α

�
∥∥Fα( f χr)χE

∥∥
L2
α

+ ∥∥Fα( f χ̃r)χE
∥∥

L2
α
,

hence, it follows from Plancherel’s theorem that∥∥Fα( f )
∥∥

L2
α(E)

� μα(E)1/2
∥∥Fα( f χr)

∥∥∞ + ‖ f χ̃r‖L2
α
.

Now ∥∥Fα( f χr)
∥∥∞ � 1

2αΓ (α + 1)
‖ f χr‖L1

α
�

‖x−sχr‖L2
α

2αΓ (α + 1)

∥∥xs f
∥∥

L2
α

= aαrα+1−s
∥∥xs f

∥∥
2
Lα



506 S. Ghobber, P. Jaming / J. Math. Anal. Appl. 377 (2011) 501–515
with aα = π(α+1)/2√
2α(α+1−s)Γ (α+1)

. On the other hand,

‖ f χ̃r‖L2
α

�
∥∥x−sχ̃r

∥∥∞
∥∥xs f

∥∥
L2
α

= r−s
∥∥xs f

∥∥
L2
α
,

so that∥∥Fα( f )
∥∥

L2
α(E)

�
(
r−s + aαrα+1−sμα(E)1/2)∥∥xs f

∥∥
L2
α
.

The desired result is obtained by minimizing the right hand side of that inequality over r > 0.
As for the second part we write∥∥Fα( f )

∥∥2
L2
α(E)

� μα(E)
∥∥Fα( f )

∥∥2
∞ � μα(E)

(2αΓ (α + 1))2
‖ f ‖2

L1
α
.

Moreover

‖ f ‖2
L1
α

=
( ∞∫

0

(
1 + x2s)1/2∣∣ f (x)

∣∣(1 + x2s)−1/2
dμα(x)

)2

,

by the Cauchy–Schwartz inequality, we have

‖ f ‖2
L1
α

�
( ∞∫

0

dμα(x)

1 + x2s

)( ∞∫
0

(
1 + x2s)∣∣ f (x)

∣∣2
dμα(x)

)

=
( ∞∫

0

dμα(x)

1 + x2s

)[‖ f ‖2
L2
α

+ ∥∥xs f
∥∥2

L2
α

]
.

Replacing f (x) by f (rx), r > 0, in the last inequality gives

‖ f ‖2
L1
α

�
( ∞∫

0

dμα(x)

1 + x2s

)[
r2(α+1)‖ f ‖2

L2
α

+ r2(α+1−s)
∥∥xs f

∥∥2
L2
α

]
,

the desired result is obtained by minimizing the right hand side of that inequality over r > 0.
An easy computation shows that this proof gives

K (s,α) = α + 1

α + 1 − s

[
aα(α + 1 − s)

s

] α+1
s

and K ′(s,α) = 1
2αΓ (α+1)

[ s
α+1 ( s

α+1 − 1)
α+1−s

s × ∫ ∞
0

dμα(x)
1+x2s ]1/2. �

4. Pairs of sets of finite measure are strongly annihilating

In this section we will show that, if S and Σ have finite measure, then the pair (S,Σ) is strongly annihilating. Before
proving the general case, let us first notice that if α is a positive half-integer, this can be obtained by transferring the result
for the Euclidean Fourier transform established in [10] ([11] for d = 1). Indeed there exists cd such that, for Sd,Σd ⊂ R

d of
finite Lebesgue measure, and F ∈ L2(Rd),

‖F‖L2(Rd) � cdecd|Sd||Σd|(‖F‖L2(Sc
d) + ‖ F̂‖L2(Σc

d )

)
. (4.10)

If we define S and Σ as

Sd = {
x ∈ R

d: |x| ∈ S
}

and Σd = {
x ∈ R

d: |x| ∈ Σ
}
,

then for every function f ∈ L2
d/2−1(R

+), there exists c such that

‖ f ‖L2
d/2−1

� cecμd/2−1(S)μd/2−1(Σ)
(‖ f ‖L2

d/2−1(Sc) + ∥∥Fd/2−1( f )
∥∥

L2
d/2−1(Σc)

)
. (4.11)

Remark. It is conjectured that the constant cdecd|Sd ||Σd | in (4.10) may be replaced by cdecd(|Sd ||Σd|)1/d
even when Sd,Σd are

not radial sets.
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We will now consider the general case where α > −1/2. We will still show that if S and Σ have finite measure then
the pair (S,Σ) is strongly annihilating. Unfortunately a precise estimate like (4.11) still eludes us unless μα(S)μα(Σ) is
small enough (see Lemma 4.2). In order to prove that the pair (S,Σ) is strongly annihilating, we will use an abstract result
for [9, I.1.1.A, p. 88], for which we need the following notations.

We consider a pair of orthogonal projections on L2
α(R+) defined by

E S f = χS f , Fα(FΣ f ) = χΣ Fα( f ),

where S and Σ are measurable subsets of R
+ .

Lemma 4.1. Let S and Σ be measurable subsets of R
+ . Then the following assertions are equivalent:

(1) ‖FΣ E S‖ < 1;
(2) There exists a constant D(S,Σ) such that for all f ∈ L2

α(R+) supported in S

‖ f ‖L2
α

� D(S,Σ)‖FΣc f ‖L2
α
;

(3) (S,Σ) is a strongly annihilating pair i.e.: there exists a constant C(S,Σ) such that for all f ∈ L2
α(R+)

‖ f ‖L2
α

� C(S,Σ)
(‖E Sc f ‖L2

α
+ ‖FΣc f ‖L2

α

)
.

Moreover one may take D(S,Σ) = (1 − ‖FΣ E S‖)−1 and C(S,Σ) = 1 + D(S,Σ).

Proof. For sake of completeness let us recall the proof of (1) ⇒ (2) ⇒ (3), which is the only fact needed in this paper.
Suppose f is supported in S . Then

‖FΣ f ‖ = ‖FΣ E S f ‖ � ‖FΣ E S‖‖ f ‖L2
α
.

It follows that

‖FΣc f ‖L2
α

� ‖ f ‖L2
α

− ‖FΣ f ‖L2
α

�
(
1 − ‖FΣ E S‖

)‖ f ‖L2
α
.

Hence, if ‖FΣ E S‖ < 1, then

‖ f ‖L2
α

�
(
1 − ‖FΣ E S‖

)−1‖FΣc f ‖L2
α
.

Let us now show the second implication. Let f ∈ L2
α(R+), then

‖ f ‖L2
α

� ‖E S f ‖L2
α

+ ‖E Sc f ‖L2
α

� D(S,Σ)‖FΣc E S f ‖L2
α

+ ‖E Sc f ‖L2
α

= D(S,Σ)
∥∥FΣc ( f − E Sc f )

∥∥
L2
α

+ ‖E Sc f ‖L2
α

� D(S,Σ)‖FΣc f ‖L2
α

+ D(S,Σ)‖FΣc E Sc f ‖L2
α

+ ‖E Sc f ‖L2
α
.

Since ‖FΣc E Sc f ‖L2
α

� ‖E Sc f ‖L2
α

, we obtain

‖ f ‖L2
α

�
(
1 + D(S,Σ)

)(‖E Sc f ‖L2
α

+ ‖FΣc f ‖L2
α

)
, (4.12)

as claimed. �
Unfortunately, showing that ‖FΣ E S‖ < 1 is in general difficult. However, the Hilbert–Schmidt norm ‖.‖HS is much easier

to compute. In our case, we have the following lemma:

Lemma 4.2. Let S and Σ be a pair of measurable subsets of R
+ with finite Lebesgue measure. Then

‖FΣ E S‖HS � κα

√
2π |S|Σ |

where κα is a numerical constant that depends only on α given by (2.3).
In particular, if |S|Σ | < κ−2

α , then for any f ∈ L2
α(R+),

‖ f ‖L2
α

�
(

1 + 1

1 − κα
√

2π |S|Σ |
)(‖E S f ‖L2

α
+ ‖FΣc f ‖L2

α

)
. (4.13)
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Proof. The second part of the lemma follows immediately from the fact that ‖FΣ E S‖ � ‖FΣ E S‖HS .
Since |Σ | < +∞ it follows from (2.3) that, for every x > 0, jα(2πx·)χΣ ∈ L2

α(R+). A straightforward computation shows
that FΣ E S is an integral operator with kernel

N(x, y) = Fα

(
χΣ jα(2πx·))(y)χS(x). (4.14)

From Plancherel’s theorem, we deduce that

‖FΣ E S‖2
HS =

∞∫
0

∣∣χS(x)
∣∣2

( ∞∫
0

∣∣Fα

(
χΣ jα(2πx·))(y)

∣∣2
dμα(y)

)
dμα(x)

=
∞∫

0

∣∣χS(x)
∣∣2

( ∞∫
0

∣∣χΣ(y)
∣∣2∣∣ jα(2πxy)

∣∣2
dμα(y)

)
dμα(x)

= (2π)2α+2

∞∫
0

∞∫
0

χS(x)χΣ(y)
∣∣ jα(2πxy)

∣∣2
(xy)2α+1 dx dy

� 2πκ2
α |S||Σ |

using (2.3). �
Let us now be more general, set α > −1/2 and S , Σ two measurable subsets of finite measure.

Theorem 4.3. Let S, Σ be a pair of measurable subsets of R
+ with 0 < |S|, |Σ | < +∞. Then the pair (S,Σ) is a strong annihilating

pair.

Remark. Let S be a measurable subset of R
+ . Using Hölder’s inequality one easily shows that, for every ε > 0 there is a

constant C = C(α, ε) depending only on α and ε such that the Lebesgue measure |S| satisfies

|S| � 1 + Cεμα(S)
1

2α+2 +ε. (4.15)

In particular, Theorem A from the Introduction follows directly from Theorem 4.3.
Note that the proof below will not give any estimate on the α-annihilation constant of (S,Σ).

Proof of Theorem 4.3. According to [9, I.1.3.2.A, p. 90], if FΣ E S is compact (in particular if FΣ E S is Hilbert–Schmidt), then
if (S,Σ) is a weak annihilating pair, it is also a strong annihilating pair. Let us now show that if 0 < |S|, |Σ | < +∞, then
(S,Σ) is a weak annihilating pair.

In order to do so, let us introduce some further notations. We will write E S ∩ FΣ for the orthogonal projection onto the
intersection of the ranges of E S and FΣ and we denote by Im T the range of linear operator T .

We will need the following elementary fact on Hilbert–Schmidt operators:

dim(Im E S ∩ Im FΣ) = ‖E S ∩ FΣ‖2
HS � ‖FΣ E S‖2

HS.

As S and Σ have finite measure then according to Lemma 4.2 we deduce that

dim(Im E S ∩ Im FΣ) � ‖FΣ E S‖2
HS < +∞. (4.16)

Assume towards a contradiction that there exists f0 �= 0 such that S0 := supp f0 and Σ0 := supp Fα( f0) have both finite
measure 0 < |S0|, |Σ0| < +∞.

Let S1 be a measurable subset of R
+ of finite Lebesgue measure such that S0 ⊂ S1. Since for λ > 0,

|S1 ∪ λS0| = ‖χλS0 − χS1‖2
L2(R+)

+ 〈χλS0 ,χS1〉L2(R+),

the function λ �→ |S1 ∪ λS0| is continuous on (0,+∞). From this, one easily deduces that, there exists an infinite sequence
of distinct numbers (λ j)

+∞
j=0 ⊂ (0,∞) with λ0 = 1, such that, if we denote by S = ⋃+∞

j=0 λ j S0 and Σ = ⋃+∞
j=0

1
λ j

Σ0,

|S| < 2|S0|, |Σ | < 2|Σ0|.
We next define f i = δλi f0, so that supp f i = λi S0. Since Fα( f i) = δ 1

λi
Fα( f0), we have supp Fα( f i) = 1

λi
Σ0.

As supp Fα( f0) has finite measure, f0 is continuous on R
+ and f0(x) → 0 when x → +∞. It follows from Lemma 2.1

that ( f i)
∞
i=0 are linearly independent vectors belonging to Im E S ∩ Im FΣ , which contradicts (4.16). �
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Corollary 4.4. Let S, Σ be a pair of measurable subsets of R
+ with 0 < |S|, |Σ | < +∞ and let Sd = {x ∈ R

d: |x| ∈ S}, Σd =
{ξ ∈ R

d: |ξ | ∈ Σ}. Then the pair (Sd,Σd) is a weak annihilating pair for the Fourier transform: if F ∈ L2(Rd) is such that supp F ⊂ Sd

and supp F̂ ⊂ Σd, then F = 0.

Proof. We may write, for almost all r > 0

F (rζ ) =
∑
k�0

Fk(r)r
k Hk(ζ )

where Hk(ζ ) is a spherical harmonic polynomial of degree k and the series converges in the L2(Rd) sense. As

Fk(r)r
k Hk(ζ ) =

∫
Sd−1

F (rξ)Zk(ξ, ζ )dσ(ξ)

with Zk the zonal polynomial of degree k, Fk is supported in S . Moreover, the Funk–Hecke formula gives

F (rζ ) =
∑
k�0

ik Fd/2+k−1[Fk](r)rk Hk(ζ )

so that Fd/2+k−1[Fk](r) is supported in Σ . As (S,Σ) is annihilating for Fd/2+k−1 Fk = 0 for all k, thus F = 0. �
Remark. We do not know whether Sd,Σd is a strong annihilating pair. Indeed, the proof above appealed to Fourier–Bessel
transforms of various exponents. To prove that (Sd,Σd) is a strong annihilating pair this way, we would need to prove that
(S,Σ) is a strong annihilating pair for each Fd/2+k−1, k = 0,1, . . . , with annihilation constants Cd/2+k−1(S,Σ) independent
of k.

Moreover, let us denote by νd(rζ ) = dr dσ(ζ ), r > 0 and σ ∈ S
d−1, which should be compared to the Lebesgue measure

rd−1 dr dσ(ζ ). It is also natural to conjecture that if Sd,Σd ⊂ R
d are such that νd(Sd), νd(Σd) < +∞ then (Sd,Σd) is a weak

annihilating pair for the Fourier transform.

5. A result on ε-thin sets

5.1. ε-Thin sets

Results in this section are inspired by the ones of Shubin, Vakilian and Wolff who proved in [15] that pairs of ε-thin
sets are strongly annihilating for the Euclidean Fourier transform. To be more precise, let 0 < ε < 1 and let us define
ρ(x) = min(1, |x|−1). A measurable set S ⊂ R

d is said to be ε-thin if, for every x ∈ R
d , |S ∩ B(x,ρ(x))| � ε|B(x,ρ(x))|. Then

Theorem (Shubin–Vakilian–Wolff). (See [15, Theorem 2.1].) There exists ε0 such that, for every 0 < ε < ε0 there is a constant C =
C(ε) such that, if S,Σ ⊂ R

d are ε-thin, then, for every f ∈ L2(Rd),

‖ f ‖L2(Rd) � C
(‖ f ‖L2(Sc) + ‖ f̂ ‖L2(Σc)

)
.

We will now adapt this result to the Fourier–Bessel transform. In order to do so, we first need to define an appropriate
notion of ε-thin sets for the measure μα . We want that the notion which we introduce coincides with the notion of ε-thin
radial sets when α = d/2 − 1.

Let us write Cr1,r2 = {x ∈ R
d: r1 � |x| � r2}.

Now, take S = {rζ : r ∈ S0, ζ ∈ S
d−1} be a radial subset of R

d that is ε-thin and let us see how the fact that S is ε-thin
translates on S0.

First, let r > 2. Let {x j} j∈ J be a maximal subset of Cr,r+1/r such that |x j − xk| � min(ρ(x j),ρ(xk)). Then the B(x j,ρ(x j))

cover Cr,r+1/r . Moreover, it is easy to check that, if y ∈ B(x,ρ(x)) then C−1ρ(x) � ρ(y) � Cρ(x). It follows that there is a
constant Cd � 1 such that the balls B(x j, C−1

d ρ(x j)) are disjoint. But then

|S ∩ Cr,r+1/r | �
∑∣∣S ∩ B

(
x j,ρ(x j)

)∣∣ � ε
∑∣∣B

(
x j,ρ(x j)

)∣∣
� Kε

∑∣∣B
(
x j, C−1

d ρ(x j)
)∣∣ � Kε|Cr−1/2r,r+2/r |.

This can be rewritten in terms of μd/2−1 as

μd/2−1
(

S0 ∩ [r, r + 1/r]) � Kεμd/2−1
([r − 1/2r, r + 2/r]) � Kεμd/2−1

([r − 1/r, r + 1/r])
since the measure μα is doubling.

A similar argument leads also to

μd/2−1
(

S0 ∩ [r, r + 1]) � Kεμd/2−1
([r, r + 1])
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for r � 1, where K is a constant that depends only of α. This leads us to introduce the definition of (ε,α)-thin sets given
in the Introduction. For the convenience of the reader, let us recall it:

Definition. Let ε ∈ (0,1) and α > −1/2. A set S ⊂ R
+ is (ε,α)-thin if, for 0 � x � 1,

μα

(
S ∩ [x, x + 1]) � εμα

([x, x + 1])
and for x � 2,

μα

(
S ∩

[
x, x + 1

x

])
� εμα

([
x, x + 1

x

])
.

We will need the following simple lemma concerning those sets:

Lemma 5.1. Let ε ∈ (0,1) and α > −1/2 and let S ⊂ R
+ be (ε,α)-thin. Then, there is a constant C depending only on α such that, if

a � 1 and b − a � 1
a are such that

μα

(
S ∩ [a,b]) � Cεμα

([a,b])
while for b > 1,

μα

(
S ∩ [0,b]) � Cεμα

([0,b]).
Proof. For a � 1, we define the sequence (a j) j�0 by a0 = a and a j+1 = a j + 1

a j
. It is easily seen that (a j) is increasing and

a j → +∞. Thus there exists n such that an � b � an+1. Note that b � a + 1/a = a1 thus n � 1. Further an+1 = an + 1/an �
b + 1/a � b + b − a thus μα([a,an+1]) � Cαμα([a,b]). It follows that

μα

(
S ∩ [a,b]) �

n∑
j=0

μα

(
S ∩ [a j,a j+1]

)
� ε

n∑
j=0

μα

([a j,a j+1]
)

= εμα

([a,an+1]
)
� Cαεμα

([a,b]).
On the other hand, if b > 2 then b � 1 + 1/1 so that

μα

(
S ∩ [0,b]) = μα

(
S ∩ [0,1]) + μα

(
S ∩ [1,b]) � εμα

([0,1]) + Cαεμα

([1,b]) � (1 + Cα)εμα

([0,b])
according to the first part of the proof. For 1 < b � 2,

μα

(
S ∩ [0,b]) � μα

(
S ∩ [0,2]) � εμα

([0,2]) � Cαεμα

([0,b])
which gives the second part of the lemma. �
Remark. We will need the following computations. If r/x � x then

μα

([
x − r

x
, x + r

x

])
= (2π)α+1

x+r/x∫
x−r/x

t2α+1 dt � (2π)α+1 2r

x
(x + r/x)2α+1

�
(
23π

)α+1
rx2α. (5.17)

On the other hand, for r/x � x/2 a similar computation shows that

μα

([
0, x + r

x

])
� (18π)α+1

(
r

x

)2α+2

. (5.18)

Example. It should be noted that a measurable subset (ε,α)-thin may not be of finite Lebesgue measure.
Let ε ∈ (0,1), k ∈ N and S = ⋃

k�106 [k,k + ε
ck ] so that |S| = +∞. Moreover if the constant c is large enough then S is

(ε,α)-thin. Indeed if S ∩ [x, x + 1
x ] �= ∅ then there exists an integer k such that x ≈ k and

μα

(
S ∩

[
x, x + 1

x

])
= μα

([
k,k + ε

ck

]
∩

[
x, x + 1

x

])
� εk2α

c
� εμα

([
x, x + 1

x

])
if c is large enough.
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5.2. Pairs of ε-thin sets are strongly annihilating

We are now in a position to prove the following uncertainty principle in the spirit of [15, Theorem 2.1].

Theorem 5.2. Let α > −1/2. There exists ε0 such that, for every 0 < ε < ε0 , there exists a positive constant C such that if S and Σ

are (ε,α)-thin sets in R
+ then for any f ∈ L2

α(R+)

‖ f ‖L2
α

� C
(‖ f ‖L2

α(Sc) + ∥∥Fα( f )
∥∥

L2
α(Σc)

)
. (5.19)

Proof. In this proof, we construct two bounded integral operators K and L such that K + L = I . Moreover K E S and FΣ L are
bounded operators on L2

α(R+) with

‖K E S‖ � C1
√

ε, ‖FΣ L‖ � C2
√

ε.

From such a situation, the uncertainty principle can be easily derived. As

‖FΣ E S‖ = ∥∥FΣ(L + K )E S
∥∥ � ‖FΣ L‖ + ‖K E S‖,

then

‖FΣ E S‖ � (C1 + C2)
√

ε.

Now if ε < ε0 = 1
(C1+C2)2 , using Lemma 4.1, we obtain the desired result

‖ f ‖L2
α

�
(

1 + 1

1 −
√

ε
ε0

)(‖E Sc f ‖L2
α

+ ‖FΣc f ‖L2
α

)
.

Now we will show how to construct a pair of such operators K and L via a Littlewood–Paley type decomposition. To
do so, we fix a real-valued Schwartz function ψ0 : R

+ → R with 0 � ψ0 � 1, suppψ0 ⊂ [0,2] and ψ0 = 1 on [0,1] and let
φ = Fα(ψ0). Note that φ is also in the Schwartz class.

Next, for j � 1 an integer, we define ψ j by ψ j(x) = ψ0(2− j x) − ψ0(2− j+1x) so that ψ j(x) = ψ1(2− j+1x). Note that
‖ψ j‖L1

α
= 22(α+1)( j−1)‖ψ1‖L1

α
, ‖ψ j‖∞ � 1, suppψ j ⊂ [2 j−1,2 j+1] for j � 1 and

∑∞
j=0 ψ j = 1.

Finally, for j ∈ N we let φ j(x) = 22(α+1) jφ(2 j x). Thus ‖φ j‖L1
α

= ‖φ‖L1
α

, Fα(φ j)(ξ) = Fα(φ)(2− jξ), supp Fα(φ j) ⊂ [0,2 j+1]
and Fα(φ j) = 1 on [0,2 j].

Define now the operators K and L on L2
α(R+) in the following way:

K f =
+∞∑
j=0

ψ j(φ j ∗α f ) (5.20)

and

L f =
+∞∑
j=0

ψ j( f − φ j ∗α f ). (5.21)

Note that the series in (5.20) and (5.21) converge pointwise since they have at most three nonvanishing terms at a given
point. It is also clear that K f + L f = f . Further, K is given by an integral kernel:

K f (x) =
+∞∫
0

A(x, y) f (y)dμα(y)

where

A(x, y) =
+∞∑
j=0

ψ j(x)T α
y φ j(x). (5.22)

We also have

Fα(L f )(x) =
+∞∫

B(x, y)Fα( f )(y)dμα(y)
0
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where

B(x, y) =
+∞∑
j=0

T α
x Fα(ψ j)(y)

(
1 − Fα(φ j)(y)

)
. (5.23)

Notice that

B(x, y) =
+∞∑
j=0

T α
x Fα(ψ j)(y)

(
1 − Fα(φ j)(y)

) =
+∞∑
j=0

T α
x Fα(ψ j)(y)

∑
k> j

ψk(y)

=
+∞∑
k=1

ψk(y)

k−1∑
j=0

T α
x Fα(ψ j)(y) =

+∞∑
k=1

ψk(y)T α
x φk−1(y). (5.24)

This has the same shape as A(y, x).
The remaining of the proof consists in two lemmas. We will first show that K and L are bounded. This will then be used

to show that

‖K E S‖ � C1
√

ε, ‖FΣ L‖ � C2
√

ε,

if S and Σ are (ε,α)-thin.
To show that K and L are bounded operators on L2

α(R+). It will suffice to prove the following lemma related to Schur’s
test:

Lemma 5.3. The kernel A satisfies the following bounds:

sup
x

+∞∫
0

∣∣A(x, y)
∣∣dμα(y) � C (5.25)

and

sup
y

+∞∫
0

∣∣A(x, y)
∣∣dμα(x) � C, (5.26)

where C is an absolute constant.
The same bound holds for B.

Proof. Formula (5.25) follows from the fact that for a fixed x the sum in (5.22) contains at most three nonvanishing terms,
‖ψ j‖∞ � 1 and ‖φ j‖L1

α
= ‖φ‖L1

α
. Therefore,

sup
x

+∞∫
0

∣∣A(x, y)
∣∣dμα(y) � 3‖φ‖L1

α
.

Fix y and note that there are at most three values of j such that dist(y, suppψ j) < 1. Call this set of j’s P . We have

+∞∫
0

∣∣A(x, y)
∣∣dμα(x) � 3‖φ‖L1

α
+

∑
j /∈P

+∞∫
0

∣∣ψ j(x)
∣∣.∣∣T α

y φ j(x)
∣∣ dμα(x).

Since φ is a Schwartz function we have

φ j(t) � C22(α+1) j(1 + 2 jt
)−6(α+1)

and, for t � 1,

φ j(t) � C2−4(α+1) j.

Let x � 0 and j /∈ P such that ψ j(x) �= 0. Since

T α
y φ j(x) =

x+y∫
φ j(t)W (y, x, t)dμα(t)
|x−y|
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and t � |x − y| � 1 then

∣∣T α
y φ j(x)

∣∣ � C2−4(α+1) j

x+y∫
|x−y|

W (y, x, t)dμα(t) = C2−4(α+1) j.

Hence

∑
j /∈P

+∞∫
0

∣∣ψ j(x)
∣∣.∣∣T α

y φ j(x)
∣∣ dμα(x) � C

∑
j�0

2−4(α+1) j‖ψ j‖L1
α
,

from which we deduce

sup
y

+∞∫
0

∣∣A(x, y)
∣∣dμα(x) � 3‖φ‖L1

α
+ C

∑
j�0

2−2(α+1) j‖ψ1‖L1
α

which completes the proof for A. According to (5.24), A and B have the same “shape”, the proof immediately adapts
to B . �

Using Schur’s test, it follows that K and L are bounded operators on L2
α .

Now we will show that there are constants C1, C2 > 0 such that

‖K E S f ‖L2
α

� C1
√

ε‖ f ‖L2
α

and

‖FΣ L f ‖L2
α

� C2
√

ε‖ f ‖L2
α
.

Using again Schur’s test, it will suffice to prove the following lemma:

Lemma 5.4. If S and Σ are (ε,α)-thin sets, then

sup
x

∫
S

∣∣A(x, y)
∣∣dμα(y) � Cε (5.27)

and

sup
y

∫
Σ

∣∣B(x, y)
∣∣dμα(x) � Cε. (5.28)

Proof. By identity (5.24) it will suffice to prove (5.27). We want to estimate∫
S

∣∣A(x, y)
∣∣dμα(y) �

∑
j�0

∫
S

∣∣ψ j(x)
∣∣∣∣T α

y φ j(x)
∣∣dμα(y).

There are at most three values of j such that ψ j(x) �= 0, so it will suffice to prove∫
S

∣∣T α
y φ j(x)

∣∣ dμα(y) � Cε. (5.29)

Fix x and let j be such that ψ j(x) �= 0. Then 2 j−1 � x � 2 j+1. We will write C for a constant that depends only on α and
that may change from line to line.

Let us explain the method of computation when replacing φ by χ[0,1] . Then |φ j(t)| = 22(α+1) jχ[0,2− j ](t). Moreover

∣∣T α
y φ j(x)

∣∣ �
π∫

0

∣∣φ j
(√

x2 + y2 − 2xy cos θ
)∣∣(sin θ)2α dθ

� 22(α+1) j

π∫ ∣∣χ[0,2− j]
(√

x2 + y2 − 2xy cos θ
)∣∣(sin θ)2α dθ.
0
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Note that if

x2 + y2 − 2xy cos θ = (x − y)2 + 4xy sin2(θ/2) � 2−2 j,

then

|x − y| � 2− j and |θ | � 2−2( j+1).

Therefore

∣∣T α
y φ j(x)

∣∣ � 22(α+1) j

2−2( j+1)∫
0

θ2α dθ � C22(α+1) j × 2−2(2α+1)( j+1) � C2−2α j.

It follows that∫
S

∣∣T α
y φ j(x)

∣∣dμα(y) =
∫

S∩[x− 1
x ,x+ 1

x ]

∣∣T α
y φ j(x)

∣∣dμα(y)

� C2−2α jμα

(
S ∩

[
x − 1

x
, x + 1

x

])
� Cε2−2α jx2α � Cε.

As φ is a Schwartz function, then

φ(t) � CN

∑
k�0

2−kNχ[0,2k](t),

where N is a large integer. Then

∣∣T α
y φ j(x)

∣∣ � CN 22(α+1) j
∑
k�0

2−kN

π∫
0

χ[0,2k− j ]
(√

x2 + y2 − 2xy cos θ
)
(sin θ)2α dθ.

Now, if the integral on the right hand side is non-zero, then x2 + y2 − 2xy cos θ := (x − y)2 + 4xy sin2(θ/2) � 22k−2 j . This

implies that |x − y| � 2k− j i.e. y ∈ [x − 2k

x , x + 2k

x ] ∩ R
+ . Further, for k < j we also have |θ | � C2k−2 j so that

π∫
0

χ[0,2k− j ]
(√

x2 + y2 − 2xy cos θ
)
(sin θ)2α dθ �

C2k−2 j∫
0

θ2α dθ � C2(2α+1)(k−2 j).

For k � j, we will use the straightforward inequality

π∫
0

χ[0,2k− j ]
(√

x2 + y2 − 2xy cos θ
)
(sin θ)2α dθ � C .

It follows that∣∣T α
y φ j(x)

∣∣ � CN 2−2α j
∑

0�k< j

2−k(N−2α−1)χ[(x− 2k
x )+,x+ 2k

x ](y)

+ CN 22(α+1) j
∑
k� j

2−kNχ[(x− 2k
x )+,x+ 2k

x ](y), (5.30)

where a+ = max(0,a). Note that, since 2 j−1 � x � 2 j+1, x − 2k

x � 0 as long as k � 2 j − 2. From (5.30) we deduce that∫
S

∣∣T α
y φ j(x)

∣∣dμα(y) � CN 2−2α j
∑

0�k< j

2−k(N−2α−1)μα

(
S ∩

[
x − 2k

x
, x + 2k

x

])

+ CN 22(α+1) j
∑

j�k�2 j−2

2−kNμα

(
S ∩

[(
x − 2k

x

)
+
, x + 2k

x

])

+ CN 22(α+1) j
∑

k�2 j−1

2−kNμα

(
S ∩

[
0, x + 2k

x

])
= CN(Σ1 + Σ2 + Σ3).
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Using (5.17), the first sum is simply estimated as follows:

Σ1 � C2−2α jx2α
∑

0�k< j

2−k(N−2α−2)ε � C
∑
k�0

2−k(N−2α−2)ε � Cε

provided we take N > 2α + 2.
For the second sum, we appeal again to (5.17) and write

Σ2 � C2(4α+2) j
∑

j�k<2 j

2−k(N−1)ε � Cε

provided we take N > 4α + 3, while for the last sum we use (5.18) to get

Σ3 � C
22(α+1) j

x2(α+1)

∑
k�2 j

2−kN 22(α+1)kε � Cε.

The proof of (5.28) is similar. �
This completes the proof Theorem 5.2. �

Remark. It would be interesting to obtain more precise quantitative estimates of the constants C(S,Σ) in Theorems 4.3
and 5.2. In a forthcoming work, we will obtain such an estimate in the case S = [0,a] is an interval and Σ is (ε,α)-thin
with 0 < ε < 1 arbitrary. This estimate takes the form ‖FΣ E[0,a]‖ � fa(ε) where fa(ε) → 0 as ε → 0.1 Note that this allows
to extend Theorem 5.2 to sets S,Σ of the form S = S0 ∪ S∞ , Σ = Σ0 ∪Σ∞ where S0 ⊂ [0,a], Σ0 ⊂ [0,b] and S∞ ⊂ [a,+∞),
Σ∞ ⊂ [b,+∞) are ε-thin.

Indeed, FΣ E S = FΣ0 E S0 + FΣ∞ E S0 + FΣ0 E S∞ + FΣ∞ E S∞ . Now, according to Theorem 4.3, ‖FΣ0 E S0‖ < 1. Further,
‖FΣ∞ E S0‖ + ‖FΣ0 E S∞‖ � fa(ε) + fb(ε) → 0 as ε → 0 and ‖FΣ∞ E S∞‖ � C

√
ε, according to (the proof of) Theorem 5.2.

It follows that, if ε is small enough, then ‖FΣ E S‖ < 1 so that (S,Σ) is still a strong annihilating pair.
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