期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:429 |
Compactness of embeddings of function spaces on quasi-bounded domains and the distribution of eigenvalues of related elliptic operators. Part II | |
Article | |
Leopold, Hans-Gerd1  Skrzypczak, Leszek2  | |
[1] Univ Jena, Math Inst, D-07740 Jena, Germany | |
[2] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-61614 Poznan, Poland | |
关键词: Compact embeddings; Besov and Triebel-Lizorkin spaces; Quasi-bounded domains; Elliptic operators; Distribution of eigenvalues; | |
DOI : 10.1016/j.jmaa.2015.03.072 | |
来源: Elsevier | |
【 摘 要 】
We prove the asymptotic behaviour of eigenvalues of elliptic self-adjoint differential operators defined on a wide class of quasi-bounded domains. The estimates are based on corresponding asymptotic behaviour of entropy numbers of Sobolev embeddings of Sobolev and Besov function spaces defined on the quasi-bounded domains. We consider also the inverse problem i.e. we identify the class of functions that can describe the asymptotic behaviour of eigenvalues of Dirichlet Laplacian of some quasi-bounded domain. (C) 2015 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2015_03_072.pdf | 464KB | download |