期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:429
Compactness of embeddings of function spaces on quasi-bounded domains and the distribution of eigenvalues of related elliptic operators. Part II
Article
Leopold, Hans-Gerd1  Skrzypczak, Leszek2 
[1] Univ Jena, Math Inst, D-07740 Jena, Germany
[2] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-61614 Poznan, Poland
关键词: Compact embeddings;    Besov and Triebel-Lizorkin spaces;    Quasi-bounded domains;    Elliptic operators;    Distribution of eigenvalues;   
DOI  :  10.1016/j.jmaa.2015.03.072
来源: Elsevier
PDF
【 摘 要 】

We prove the asymptotic behaviour of eigenvalues of elliptic self-adjoint differential operators defined on a wide class of quasi-bounded domains. The estimates are based on corresponding asymptotic behaviour of entropy numbers of Sobolev embeddings of Sobolev and Besov function spaces defined on the quasi-bounded domains. We consider also the inverse problem i.e. we identify the class of functions that can describe the asymptotic behaviour of eigenvalues of Dirichlet Laplacian of some quasi-bounded domain. (C) 2015 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2015_03_072.pdf 464KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:1次