期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:432
Singularity aspects of Archimedean copulas
Article
Fernandez Sanchez, Juan1  Trutschnig, Wolfgang2 
[1] Univ Almeria, Grp Invest Anal Matemat, La Canada De San Urbano, Almeria, Spain
[2] Salzburg Univ, Dept Math, A-5020 Salzburg, Austria
关键词: Copula;    Doubly stochastic measure;    Singular function;    Markov kernel;    Convex function;   
DOI  :  10.1016/j.jmaa.2015.06.036
来源: Elsevier
PDF
【 摘 要 】

Calculating Markov kernels of two-dimensional Archimedean copulas allows for very simple and elegant alternative derivations of various important formulas including Kendall's distribution function and the measures of the level curves. More importantly, using Markov kernels we prove the existence of singular Archimedean copulas A(phi), with full support of the following two types: (i) All conditional distribution functions y bar right arrow F-x(A phi)(y) are discrete and strictly increasing; (ii) all conditional distribution functions y bar right arrow F-x(A phi) (y) are continuous, strictly increasing and have derivative zero almost everywhere. The results show that despite of their simple analytic form Archirnedean copulas can exhibit surprisingly singular behavior. (C) 2015 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2015_06_036.pdf 834KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次