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Calculating Markov kernels of two-dimensional Archimedean copulas allows for 
very simple and elegant alternative derivations of various important formulas 
including Kendall’s distribution function and the measures of the level curves. More 
importantly, using Markov kernels we prove the existence of singular Archimedean 
copulas Aϕ with full support of the following two types: (i) All conditional 
distribution functions y �→ F

Aϕ
x (y) are discrete and strictly increasing; (ii) all 

conditional distribution functions y �→ F
Aϕ
x (y) are continuous, strictly increasing 

and have derivative zero almost everywhere. The results show that despite of 
their simple analytic form Archimedean copulas can exhibit surprisingly singular 
behavior.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Being the link between multivariate distribution functions and their marginals copulas are a fundamental 
tool in dependence modeling. Archimedean copulas form an important subclass of copulas which has been 
successfully applied in various fields like finance and hydrology (see, for instance, [3,13,14] and the references 
therein), mainly due to their simple analytic form. In fact, every Archimedean copula is fully characterized 
in terms of a single convex, strictly decreasing function ϕ : [0, 1] → [0, ∞] called the generator. In the 
Archimedean setting important quantities can be calculated explicitly and expressed as simple formulas 
involving only the generator (again see [14]). It is also well known that (weak) convergence of Archimedean 
copulas can easily be characterized by properties of the corresponding generators (see [2]).

In the current paper we concentrate on singularity aspects of Archimedean copulas and prove that, despite 
their simple analytic form, they may exhibit very singular behavior when it comes to the distribution of 
mass. More precisely, we prove the existence of two different types of singular Archimedean copulas Aϕ

with full support: (i) All conditional distribution functions y �→ F
Aϕ
x (y) are discrete and strictly increasing; 
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(ii) all conditional distribution functions y �→ F
Aϕ
x (y) are continuous, strictly increasing and have derivative 

zero almost everywhere. Copulas with property (ii) have already been constructed in [20] with the help of 
Iterated Function Systems with Probabilities and Ergodic Theory – at first sight it seems surprising that 
such a peculiar mass distribution is also possible for Archimedean copulas.

The rest of the paper is organized as follows: Section 2 gathers some preliminaries and notations that 
will be used throughout the paper. Section 3 calculates Markov kernels (regular conditional distributions) 
of Archimedean copulas and demonstrates that well-known results/formulas for Archimedean copulas are 
straightforwardly derivable when working with Markov kernels. Finally, Section 4 contains the construction 
of the afore-mentioned types of singular Archimedean copulas with full support.

2. Notation and preliminaries

In the sequel C will denote the family of all two-dimensional copulas, PC the family of all doubly stochastic 
measures, see [4,14,17]. For every A ∈ C the corresponding doubly stochastic measure will be denoted by μA. 
Following [14] a function ϕ : [0, 1] → [0, ∞] is called generator if ϕ is convex, strictly decreasing and fulfills 
ϕ(1) = 0. A generator ϕ is called strict if ϕ(0) = ∞ holds. In case of ϕ(0) < ∞ we will refer to ϕ as 
non-strict. Every (strict or non-strict) generator ϕ induces a symmetric copula Aϕ via

Aϕ(x, y) = ϕ[−1](ϕ(x) + ϕ(y)
)
, x, y ∈ [0, 1],

to which we will refer as the (strict or non-strict) Archimedean copula induced by ϕ. Thereby the pseudo-
inverse ϕ[−1] : [0, ∞] → [0, 1] of ϕ is defined by

ϕ[−1](t) =
{
ϕ−1(t) if t ∈ [0, ϕ(0))
0 if t ≥ ϕ(0).

If ϕ is strict then ϕ[−1] coincides with the standard inverse and it is straightforward to verify that, for given 
x ∈ (0, 1] the function y �→ Aϕ(x, y) is strictly increasing.

Furthermore, it is well known (see again [14]) that for Archimedean copulas the level set Lt := {(x, y) ∈
[0, 1]2 : Aϕ(x, y) = t} is a convex curve for every t ∈ (0, 1]. For t = 0 we get L0 = ({0} × [0, 1]) ∪ ([0, 1] ×{0})
if ϕ is strict whereas L0 has positive area if ϕ is non-strict. Defining f t : [t, 1] → [0, 1] by

f t(x) := ϕ−1(ϕ(t) − ϕ(x)) (1)

we obviously have

Γ(f t) :=
{
(x, f t(x)) : x ∈ [t, 1]

}
= Lt (2)

for every t ∈ (0, 1], i.e. the graph of f t coincides with the level curve Lt. Additionally, if ϕ is non-strict 
L0 = {(x, y) ∈ [0, 1]2 : y ≤ f0(x)} holds.

In the sequel B(R) denotes the Borel σ-field in R, λ and λ2 the Lebesgue measures on R and R2 respec-
tively. A Markov kernel from R to B(R) is a mapping K : R × B(R) → [0, 1] such that x �→ K(x, B) is 
measurable for every fixed B ∈ B(R) and B �→ K(x, B) is a probability measure for every fixed x ∈ R. If we 
only have K(x, R) ∈ [0, 1] then K(·, ·) will be called substochastic kernel. Suppose that X, Y are real-valued 
random variables on a probability space (Ω, A, P), then a Markov kernel K : R × B(R) → [0, 1] is called a 
regular conditional distribution of Y given X if for every B ∈ B(R)

K(X(ω), B) = E(1B ◦ Y |X)(ω) (3)
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holds P-a.e. It is well known that for each pair (X, Y ) of real-valued random variables a regular conditional 
distribution K(·, ·) of Y given X exists, that K(·, ·) is unique PX -a.s. (i.e. unique for PX -almost all x ∈ R) 
and that K(·, ·) only depends on PX⊗Y . Hence, given A ∈ C we will denote (a version of) the regular condi-
tional distribution of Y given X by KA(·, ·) and refer to KA(·, ·) simply as regular conditional distribution 
of A or as Markov kernel of A. Note that for every A ∈ C, its conditional regular distribution KA(·, ·), and 
every Borel set G ∈ B([0, 1]2) we have the following disintegration (here Gx := {y ∈ [0, 1] : (x, y) ∈ G}
denotes the x-section of G for every x ∈ [0, 1])

∫
[0,1]

KA(x,Gx) dλ(x) = μA(G), (4)

so in particular

∫
[0,1]

KA(x, F ) dλ(x) = λ(F ) (5)

for every F ∈ B([0, 1]). On the other hand, every Markov kernel K : [0, 1] × B([0, 1]) → [0, 1] fulfilling (5)
induces a unique element μ ∈ PC([0, 1]2) via (4). For every A ∈ C and x ∈ [0, 1] the function y �→ FA

x (y) :=
KA(x, [0, y]) will be called conditional distribution function of A at x. For more details and properties 
of conditional expectation, regular conditional distributions, and disintegration see [9,11]. For examples 
underlining the usefulness of Markov kernels in the copula setting we refer, for instance, to [18–20]. For a 
general study of the interrelation between 2-increasingness and differential properties of copulas we refer 
to [7].

As a direct application of the results in [12] the Markov kernel KA of an arbitrary copula A ∈ C can be 
decomposed into the sum of three substochastic kernels Ka

A, Ks
A, Kd

A (from [0, 1] to B([0, 1])), i.e.

KA(x,E) = Ka
A(x,E) + Ks

A(x,E) + Kd
A(x,E) (6)

for every x ∈ [0, 1] and E ∈ B([0, 1]). Thereby, the measure Ka
A(x, ·) is absolutely continuous with respect 

to λ, the measure Ks
A(x, ·) is singular with respect to λ and has no point masses, and Kd

A(x, ·) is discrete 
for every x ∈ [0, 1]. Letting kA denote the Radon–Nikodym derivative of μA with respect to λ2 (almost 
everywhere) uniqueness of the kernel KA implies that the measures Ka

A(x, ·) and E �→
∫
E
kA(x, y)dλ(y)

coincide for almost all x ∈ [0, 1]. In the sequel we will refer to the corresponding induced measures μa
A, μs

A, 
μd
A, given by

μa
A(E × F ) =

∫
E

Ka
A(x, F )dλ(x), μs

A(E × F ) =
∫
E

Ks
A(x, F )dλ(x)

μd
A(E × F ) =

∫
E

Kd
A(x, F )dλ(x) (7)

simply as absolutely continuous, discrete and singular components of μA. Letting A denote a (non-trivial) 
convex combination of the product copula Π, the minimum copula M and a singular copula S whose 
conditional distribution functions are strictly increasing, continuous and have derivative zero a.e. (for a 
construction see [20]) it is straightforward to see that all three components μa

A, μs
A, μd

A are non-degenerated. 
We conclude this section with the following auxiliary result that we will use in Section 4:
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Lemma 1. For A ∈ C the following two conditions are equivalent:

1. A is singular.
2. There exists a Borel set Λ ⊆ [0, 1] with λ(Λ) = 1 such that the measure KA(x, ·) is singular with respect 

to λ for every x ∈ Λ.

Proof. If μA is singular, then, by definition, there exists a Borel set N ⊆ [0, 1]2 such that λ2(N) = 0 and 
μA(N) = 1. Applying disintegration to λ2 and μA directly yields λ(Nx) = 0 and KA(x, Nx) = 1 for almost 
every x ∈ [0, 1], which completes the proof of the first implication.

If the second condition holds then eq. (6) implies Ka
A(x, [0, 1]) = 0 for almost every x ∈ [0, 1], from 

which we get 
∫
[0,1]2 kA(x, y)dλ2(x, y) = 0, i.e. the absolutely continuous component is degenerated and μA

is singular. �
3. Markov kernels of strict Archimedean copulas

For every generator ϕ : [0, 1] → [0, ∞] we will let D+ϕ(x) (D−ϕ(x)) denote the right-hand (left-hand) 
derivative of ϕ at x ∈ (0, 1). Convexity of ϕ implies that D+ϕ(x) = D−ϕ(x) holds for all but at most 
countably many x ∈ (0, 1), i.e. ϕ is differentiable outside a countable subset of (0, 1), and that D+ϕ is non-
decreasing and right-continuous (see, for instance, [10,15]). Setting D+ϕ(0) = −∞ in case of strict ϕ as well 
as D+ϕ(1) = 0 (for strict and non-strict ones) allows to view D+ϕ as non-decreasing and right-continuous 
function on the full unit interval [0, 1]. Additionally (again see [10,15]) we have D−ϕ(x) = D+ϕ(x−) for 
every x ∈ (0, 1).

If ϕ is strict define Kϕ(x, [0, y]) for arbitrary x, y ∈ [0, 1] by (for every a ∈ R expressions of the from a
−∞

are zero by definition throughout the whole paper)

Kϕ(x, [0, y]) =
{

1 if x ∈ {0, 1}
D+ϕ(x)

(D+ϕ)(Aϕ(x,y)) if x ∈ (0, 1). (8)

If ϕ is non-strict let Kϕ(x, [0, y]) be defined by

Kϕ(x, [0, y]) =

⎧⎪⎨
⎪⎩

1 if x ∈ {0, 1}
D+ϕ(x)

(D+ϕ)(Aϕ(x,y)) if x ∈ (0, 1) and y ≥ f0(x)
0 if x ∈ (0, 1) and y < f0(x).

(9)

The following useful theorem holds:

Theorem 2. If ϕ is strict then Kϕ according to equation (8) defines a Markov kernel of Aϕ. If ϕ is non-strict 
a Markov kernel of Aϕ is given by (9).

Proof. We only prove the result for strict ϕ – the case of non-strict ϕ can be proved analogously. Obviously 
y �→ Kϕ(x, [0, y]) is a distribution function for x ∈ {0, 1}. For x ∈ (0, 1) and y ∈ {0, 1} we obviously 
have Kϕ(x, [0, y]) = y. Using the fact that D+ϕ is right-continuous and non-decreasing on (0, 1), it follows 
that y �→ Kϕ(x, [0, y]) is a distribution function for x ∈ (0, 1) too. Extending Kϕ(x, ·) from the semiring 
{[0, y] : y ∈ [0, 1]} to B([0, 1]) therefore yields a probability measure Kϕ(x, ·) for every x ∈ [0, 1]. On the other 
hand, for every fixed y ∈ [0, 1], the function x �→ Kϕ(x, [0, y]) is measurable from which (using a standard 
Dynkin System argument) we get that x �→ Kϕ(x, B) is measurable for every Borel set B ∈ B([0, 1]). 
Altogether this implies that Kϕ(·, ·) is a Markov kernel from [0, 1] to B([0, 1]) and it remains to show that 
Kϕ(·, ·) is a Markov kernel of Aϕ. Fix y ∈ [0, 1]. Then, using convexity of ϕ−1 and bijectivity of ϕ, it 
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follows that the set Λ of all points x ∈ [0, 1] at which x �→ ϕ−1(ϕ(x) +ϕ(y)) is non-differentiable is at most 
countably infinite. Hence, using the chain rule we directly get 

∫
[0,x] Kϕ(t, [0, y])dλ(t) = Aϕ(x, y) for every 

x ∈ [0, 1], from which the desired result follows immediately. �
The following two corollaries are well-known (see [14]) – the Markov kernel approach, however, allows for 

simplified and elegant alternative proofs. To simplify notation, let Es,t ⊆ [0, 1]2 be defined by

Es,t =
{
(x, y) ∈ [0, 1]2 : x ≤ s, Aϕ(x, y) ≤ t

}
(10)

for all s, t ∈ [0, 1].

Corollary 3. Suppose that s, t ∈ [0, 1]. If ϕ is a strict generator then we have μAϕ
(Es,t) = 0 for t = 0 (and 

arbitrary s) as well as

μAϕ
(Es,t) =

{
s if s ≤ t

t + ϕ(s)−ϕ(t)
D+ϕ(t) if s > t,

(11)

for t > 0. If ϕ is non-strict then equation (11) holds for all s, t ∈ [0, 1].
As a direct consequence, for arbitrary generator ϕ, the Kendall distribution function FKendall

Aϕ
is given by

FKendall
Aϕ

(t) = t− ϕ(t)
D+ϕ(t) (12)

for every t ∈ (0, 1].

Proof. Since equation (12) directly follows from equation (11) by considering s = 1 it suffices to prove the 
first assertion.

Suppose that ϕ is strict. Because of Es,0 ⊆ ({0} × [0, 1]) ∪ ([0, 1] × {0}) we directly get μAϕ
(Es,0) = 0. 

For the case t > 0 we distinguish two cases: (i) If s ≤ t then, considering that Aϕ(x, y) ≤ t is equivalent to 
ϕ(x) + ϕ(y) ≥ ϕ(t) and that x ≤ s implies ϕ(x) ≥ ϕ(s) ≥ ϕ(t) the desired result follows immediately.

(ii) If s > t then, using equality (4) we directly get

μAϕ
(Es,t) = t +

∫
[t,s]

Kϕ(x, [0, f t(x)])dλ(x)

= t +
∫

[t,s]

D+ϕ(x)
D+ϕ

(
Aϕ(x, f t(x))

)dλ(x) = t +
∫

[t,s]

D+ϕ(x)
D+ϕ(t) dλ(x)

= t + ϕ(s) − ϕ(t)
D+ϕ(t) ,

which completes the proof for the case of strict ϕ.
In the case of non-strict ϕ there is no need to consider t = 0 and t > 0 separately and we can proceed 

completely analogous as in (i) and (ii) to get the desired result. �
Corollary 4. Suppose that ϕ is a generator. Then we have

μAϕ
(Lt) = − ϕ(t)

D+ϕ(t) + ϕ(t)
D+ϕ(t−) = − ϕ(t)

D+ϕ(t) + ϕ(t)
D−ϕ(t) (13)

for t ∈ (0, 1). Additionally, if ϕ is strict then μAϕ
(L0) = 0 and if ϕ is non-strict then μAϕ

(L0) = − ϕ(0)
D+ϕ(0)

holds.
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Proof 1. Set Er := {(x, y) ∈ [0, 1]2 : Aϕ(x, y) ≤ r} for every r ∈ [0, 1] and fix t ∈ (0, 1). Then, considering 
Lt = Et \

⋃
n>1/t Et−1/n and using Corollary 3 we immediately get

μAϕ
(Lt) = μAϕ

(Et) − lim
n→∞

μAϕ
(Et−1/n)

= t− ϕ(t)
D+ϕ(t) − lim

n→∞

(
t− 1/n− ϕ(t− 1/n)

D+ϕ(t− 1/n)

)

= − ϕ(t)
D+ϕ(t) + ϕ(t)

D+ϕ(t−) = − ϕ(t)
D+ϕ(t) + ϕ(t)

D−ϕ(t) .

For non-strict ϕ the case t = 0 follows in the same way by using L0 =
⋂

n=1 E1/n, and μAϕ
(L0) = 0 for 

strict ϕ is clear. �
Proof 2. Consider t ∈ (0, 1). Then, using equation (4), we get

μAϕ
(Lt) =

∫
[t,1]

Kϕ(x, {f t(x)})dλ(x) =
∫

[t,1]

D+ϕ(x)
D+ϕ(t) − D+ϕ(x)

D+ϕ(t−)dλ(x)

= − ϕ(t)
D+ϕ(t) + ϕ(t)

D+ϕ(t−) = − ϕ(t)
D+ϕ(t) + ϕ(t)

D−ϕ(t) .

For non-strict ϕ and t = 0 we can use μAϕ
(L0) =

∫
[0,1] Kϕ(x, [0, f0(x)])dλ(x) to get μAϕ

(L0) = − ϕ(0)
D+ϕ(0) . �

Remark 5. Considering Kϕ(x, {f t(x)}) with f t as before also shows how μAϕ
distributes its mass (if any) 

on Lt. In particular, the function x �→ Kϕ(x, {f t(x)}) is non-increasing on [t, 1].

Remark 6. Suppose that ϕ is strict and let J (D+ϕ) ⊆ (0, 1) denote the set of all discontinuities of D+ϕ. 
If J (D+ϕ) is empty μd

Aϕ
([0, 1]) = 0 follows, i.e. the discrete component of μAϕ

is degenerated. In case of 
J (D+ϕ) �= ∅ on the other hand we get

μd
A([0, 1]2) =

∑
t∈J (D+ϕ)

ϕ(t)
(
− 1

D+ϕ(t) + 1
D−ϕ(t)

)
. (14)

The latter sum also has a nice geometric interpretation as depicted in Fig. 1 (also see [14]) – it coincides 
with the length of all line segments on the x-axis generated by left- and right-hand tangents at discontinuity 
points of D+ϕ.

4. Singular Archimedean copulas with full support

Using the results from the previous section we can now prove the existence of singular Archimedean 
copulas with full support. If ϕ is non-strict then Aϕ cannot have full support (the interior of L0 is non-empty 
and has no mass), hence we focus on strict generators.

As the first result we construct an Archimedean copula Aϕ whose conditional distribution functions 
y �→ F

Aϕ
x (y) are discrete and strictly increasing. In what follows β1 : N → Q ∩ [ 12 , 1) denotes an arbitrary 

bijection. Given β1, setting βi(n) := β1(n)
2i−1 , defines a bijection βi from N onto [ 1

2i , 1
2i−1 ) ∩ Q for every 

i ≥ 2. Choose an arbitrary sequence (an)n∈N in (−∞, 0) such that 
∑∞

n=1 |an| < ∞ and define functions 
F, F1, F2, . . . and ϕ on [0, 1] by
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Fig. 1. A strict generator ϕ for which D+ϕ is discontinuous at t1 = 1/8 and t2 = 1/2. The red segments s1, s2 have length 
si = ϕ(ti)(− 1

D+ϕ(ti)
+ 1

D−ϕ(ti)
) for i ∈ {1, 2}. Fig. 2 depicts a sample of the corresponding Archimedean copula Aϕ, a histogram 

as well as the two corresponding marginal histograms. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

Fig. 2. Sample of size 20.000 of the Archimedean copula Aϕ with strict generator ϕ as depicted in Fig. 1, its histogram as well as 
the two marginal histograms. The sample has been generated using Algorithm 3.5 in [1].
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Fi(x) :=
∞∑

n=1
an1[0,βi(n)](x) (15)

F (x) :=
∞∑
i=1

2i Fi(x) (16)

ϕ(x) =
∫

[x,1]

−Fdλ. (17)

In the sequel DC(f) will denote the set of all discontinuity points of a function f : [0, 1] → [−∞, ∞].

Lemma 7. Fi is a non-decreasing, left-continuous function with DC(Fi) = [ 1
2i , 1

2i−1 ) ∩ Q and∑
q∈DC(Fi)(Fi(q+) − Fi(q)) = − 

∑∞
i=1 ai = Fi(1) − Fi(0), i.e. Fi is a non-decreasing, left-continuous jump 

function.

Proof. Obviously Fi is non-decreasing and we have Fi(βi(n)+) − Fi(βi(n)) ≥ |an| > 0 for every n ∈ N. 
Considering Fi(1) − Fi(0) = − 

∑∞
i=1 ai =

∑∞
i=1 |ai| we immediately get DC(Fi) = [ 1

2i , 1
2i−1 ) ∩ Q and it 

remains to show that Fi is left-continuous on [ 1
2i , 1

2i−1 ) ∩ Q. Since Fi is constant on [0, 1
2i ] it suffices to 

consider q ∈ ( 1
2i , 1

2i−1 ) ∩ Q. Let ε > 0. By construction there exists a unique n� ∈ N with βi(n�) = q as 
well as some n0 ≥ n� such that 

∑∞
n=n0

|an| < ε. Set L := {βi(n) : n < n0 and βi(n) < q} and define 
q0 := max(L) if L �= ∅ and q0 := 1

2i otherwise. Then δ := q − q0 > 0 and for all x ∈ (q − δ, q) we obviously 
have |Fi(q) − Fi(x)| < ε, which completes the proof. �

The next lemma summarizes the most important properties of F and ϕ.

Lemma 8. F is a left-continuous, strictly increasing jump function with F (0) = −∞ and DC(F ) = [0, 1) ∩Q. 
Furthermore ϕ is a strict generator fulfilling DC(D+ϕ) = DC(F ) and D+ϕ is a jump function.

Proof. The facts that F (0) = −∞ and that F is left-continuous follow directly from the construction. 
Furthermore, considering DC(Fi) = [ 1

2i , 1
2i−1 ) ∩ Q together with equation (15) we get DC(F ) = [0, 1) ∩ Q, 

implying that F is strictly increasing. Additionally, F is a jump function since, by construction and Lemma 7, 
we have

F (1) − F (x) =
∑

q∈[0,1)∩Q:q≥x

(F (q+) − F (q)) (18)

for every x ∈ (0, 1]. Since for every fixed m ∈ N we have

ϕ(0) >
∫

[0,1]

m∑
i=1

−2iFi dλ =
m∑
i=1

2i
∫

[0,1]

−Fi dλ ≥
m∑
i=1

(
2i 1

2i
∞∑

n=1
|an|

)

= m
∞∑

n=1
|an|

Lebesgue’s monotone convergence theorem (see [16]) implies ϕ(0) = ∞. Since −F (x) > 0 for every x ∈ [0, 1)
the function ϕ is strictly decreasing and it suffices to show that ϕ is convex. Convexity, however, is a direct 
consequence of eq. (17) and the fact that the antiderivative of a strictly increasing function is convex 
(see [15]).

In every continuity point x ∈ (0, 1) of F we have D+ϕ(x) = F (x), so the functions D+ϕ and F coincide 
on Qc ∩ (0, 1), from which we get
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F (x) = F (x−) = D+ϕ(x−) = D−ϕ(x)

F (x+) = D+ϕ(x)

for every x ∈ Q ∩ (0, 1). Hence DC(D+ϕ) = DC(F ) and D+ϕ and F even have the same jump heights. As 
a direct consequence D+ϕ is a jump function too, which completes the proof. �

With the help of the last two lemmas we arrive at the following result:

Theorem 9. Let the strict generator ϕ be defined according to equation (17). Then the copula Aϕ has the 
following properties:

1. Aϕ is singular, has full support and we have μd
Aϕ

([0, 1]2) = 1.
2. (Almost) all conditional distributions FAϕ

x are discrete with full support [0, 1].
3. The level curves Lt of Aϕ fulfill: μAϕ

(Lt) > 0 if and only if t ∈ Q ∩ (0, 1).
4. FKendall

Aϕ
is a discrete distribution function with full support [0, 1].

Proof. We start with the second assertion and consider x ∈ (0, 1). The function hx : [0, 1] → [0, x], defined 
by hx(y) = Aϕ(x, y) is a strictly increasing continuous bijection, hence Q := h−1

x (Q ∩ (0, 1)) is dense in 
[0, 1] and, using Lemma 8, D+ϕ ◦ hx is a strictly increasing, right-continuous jump function. As a direct
consequence, the function G : [0, 1] → [0, 1], defined by G(y) = D+ϕ(x)

D+ϕ◦hx(y) is a strictly increasing distribution 
function, which has a discontinuity at each y ∈ Q and which fulfills G′ = 0 almost everywhere. To show 
that G is fully discrete let Gd denote the discrete component of the Lebesgue decomposition (see [5]) of G
and suppose that Gd(1) < 1. Then the function Gs(y) := D+ϕ(x)

D+ϕ◦hx(y) −Gd(y) is singular and it follows from 
the construction that so is the function

y �→ 1
Gs(y) = D+ϕ ◦ hx(y)

D+ϕ(x) −D+ϕ ◦ hx(y)Gd(y) ,

implying that the latter has no discontinuities, which is impossible. Hence we have Gd(1) = 1 and G is a 
discrete distribution function with full support, from which, taking into account eq. (8) and Theorem 2, the 
same follows for FAϕ

x . As a direct consequence, using disintegration (4) it follows that μAϕ
(R) > 0 holds 

for every rectangle R ⊆ [0, 1]2 with λ2(R) > 0, implying that Aϕ has full support [0, 1]2.
Using the fact that a copula is singular if and only if almost all conditional distributions are singular 

(Lemma 1) it follows immediately that Aϕ is singular and that μd
Aϕ

([0, 1]2) = 1, which completes the proof 
of the first assertion and, additionally, implies that

∑
t∈Q∩(0,1)

ϕ(t)
(
− 1

D+ϕ(t) + 1
D−ϕ(t)

)
= 1. (19)

The third assertion is a direct consequence of Corollary 4 and the construction of ϕ.
Finally, using eq. (12) we deduce that FKendall

Aϕ
has a jump with height ϕ(t)(− 1

D+ϕ(t) + 1
D−ϕ(t) ) > 0 at 

t ∈ Q ∩ (0, 1). Since, according to (19), all these heights sum up to one FKendall
Aϕ

has to be discrete. �
We now construct strict Archimedean copulas having the same properties as the copulas considered 

in [20], i.e. copulas A for which (almost all) conditional distribution functions FA
x are singular (continuous 

and (FA
x )′ = 0 a.e.) and strictly increasing.

To do so, suppose that g : [0, 1] → [−1, 0] is continuous, strictly increasing and fulfills g′ = 0 a.e. as well 
as g(0) = −1 and g(1) = 0 (for a construction of such functions see, for instance, [6,8]). Given g, for every 
i ∈ N define a function Gi : [0, 1] → [−1, 0] by
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Gi(x) =

⎧⎪⎨
⎪⎩

−1 if x ∈
[
0, 1

2i

)
g
(x−1/2i

1/2i

)
if x ∈

[ 1
2i ,

1
2i−1

]
0 if x ∈

( 1
2i−1 , 1

] (20)

and set

G(x) :=
∞∑
i=1

2i Gi(x) (21)

ψ(x) :=
∫

[x,1]

−Gdλ (22)

for every x ∈ [0, 1]. The subsequent lemma gathers the most important properties of G and ψ.

Lemma 10. G is strictly increasing and continuous on (0, 1] and fulfills G′ = 0 a.e. Moreover ψ is a strict 
generator with ψ′(x) = G(x) for every x ∈ (0, 1).

Proof. It follows immediately from the construction that G is continuous on (0, 1], that G is strictly in-
creasing on (0, 1] with G(0) = −∞, G(1) = 0 and that G′ = 0 a.e. To show ψ(0) = ∞ we may proceed 
analogously to the proof of Lemma 8, the fact that ψ(1) = 0 is clear by definition. Convexity is a direct 
consequence of eq. (22) and the afore-mentioned fact that the antiderivative of a strictly increasing function 
is convex (see [15]). The remaining assertion ψ′(x) = G(x) for every x ∈ (0, 1) follows from the fact that G
is continuous on (0, 1]. �
Theorem 11. Let the strict generator ψ be defined according to equation (22). Then the copula Aψ has the 
following properties:

1. Aψ is singular, has full support and we have μs
Aψ

([0, 1]2) = 1.
2. (Almost) all conditional distribution functions FAψ

x are continuous, strictly increasing and singular.
3. Every level curve Lt of Aψ fulfills μAψ

(Lt) = 0.
4. FKendall

Aψ
is a strictly increasing singular distribution function.

Proof. We again start with the proof of the second assertion and consider x ∈ (0, 1). The function y �→
D+ψ(Aψ(x, y)) = G(Aψ(x, y)) is as composition of two strictly increasing continuous functions itself strictly 
increasing and continuous on (0, 1), from which, considering that ψ is a strict generator and using eq. (8)
and Theorem 2 we get that y �→ F

Aψ
x (y) is a strictly increasing continuous function. Moreover, considering 

that the derivative h′
x of the bijection hx(y) := Aψ(x, y) (y ∈ [0, 1]) is positive and bounded away from zero 

on any interval [a, b] ⊆ (0, 1) according to [10] hx cannot map a set of strictly positive Lebesgue measure in 
a set of zero measure. Hence, letting Λ ∈ B([0, 1]) denote a set with λ(Λ) = 1 such that G′(y) = 0 for every 
y ∈ Λ, it follows that λ(h−1

x (Λ)) = 1, implying the existence of a set Ω ∈ B([0, 1]) such that λ(Ω) = 1, hx is 
differentiable at y and G is differentiable at hx(y) for every y ∈ Ω. Having this, applying the chain rule and 
using G′ = 0 a.e. directly yields (FAψ

x )′(y) = 0 a.e., which completes the proof of the second assertion.
The first assertion is a straightforward consequence of the second one, disintegration, and the character-

ization of singular copulas via their Markov kernels established in Lemma 1.
Since assertion three follows from Corollary 4 and the fact that G is continuous on (0, 1) it remains to 

prove assertion number four, which can be easily done as follows: Continuity of ψ′ = G on (0, 1) implies 
continuity of FKendall

Aψ
on [0, 1] (left-continuity of FKendall

Aψ
at 1 follows from the fact that FKendall

Aψ
(t) ≥ t for 

every t ∈ (0, 1)). Moreover, letting Λ ∈ B((0, 1)) denote a set of full measure such that G′(t) = 0 for every 
t ∈ Λ and using Corollary 3 we finally get
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(FKendall
Aψ

)′(t) = ψ(t)G′(t)
(G(t))2 = 0

for every t ∈ Λ. �
As a direct consequence of Theorem 11 we get the following result saying that Archimedean copulas can 

be smooth (differentiable with continuous derivative) and singular with full support at the same time.

Corollary 12. There exist singular Archimedean copulas Aψ ∈ C with full support fulfilling that (x, y) �→
∂
∂xAψ(x, y) is continuous on (0, 1) × [0, 1] and (x, y) �→ ∂

∂yAψ(x, y) is continuous on [0, 1] × (0, 1).
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