期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:461
Limiting distributions of spectral radii for product of matrices from the spherical ensemble
Article
Chang, Shuhua1  Li, Deli2  Qi, Yongcheng3 
[1] Tianjin Univ Finance & Econ, Coordinated Innovat Ctr Computable Modeling Manag, Tianjin 300222, Peoples R China
[2] Lakehead Univ, Dept Math Sci, Thunder Bay, ON P7B 5E1, Canada
[3] Univ Minnesota, Dept Math & Stat, 1117 Univ Dr, Duluth, MN 55812 USA
关键词: Limiting distribution;    Spectral radius;    Spherical ensemble;    Product ensemble;    Random matrix;   
DOI  :  10.1016/j.jmaa.2018.01.048
来源: Elsevier
PDF
【 摘 要 】

ensemble for m >= 1. The spectral radius is defined as the maximum absolute value of the n eigenvalues of the product matrix. When m = 1, the limiting distribution for the spectral radii has been obtained by Jiang and Qi (2017). In this paper, we investigate the limiting distributions for the spectral radii in general. When m is a fixed integer, we show that the spectral radii converge weakly to distributions of functions of independent Gamma random variables. When m = m(n) tends to infinity as n goes to infinity, we show that the logarithmic spectral radii have a normal limit. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2018_01_048.pdf 326KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次