期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:475
On a generalization of the Rogers generating function
Article
Cohl, Howard S.1  Costas-Santos, Roberto S.2  Wakhare, Tanay V.3 
[1] NIST, Appl & Computat Math Div, Mission Viejo, CA 92694 USA
[2] Univ Alcala De Henares, Dept Fis & Matemat, Alcala De Henares 28871, Spain
[3] Univ Maryland, Dept Math, College Pk, MD 20742 USA
关键词: Basic hypergeometric series;    Basic hypergeometric orthogonal polynomials;    Generating functions;    Connection coefficients;    Eigenfunction expansions;    Definite integrals;   
DOI  :  10.1016/j.jmaa.2019.01.068
来源: Elsevier
PDF
【 摘 要 】

We derive a generalization of the Rogers generating function for the continuous q-ultraspherical/Rogers polynomials whose coefficient is a 2 phi 1. From that expansion, we derive corresponding specialization and limit transition expansions for the continuous q-Hermite, continuous q-Legendre, Laguerre, and Chebyshev polynomials of the first kind. Using a generalized expansion of the Rogers generating function in terms of the Askey Wilson polynomials by Ismail & Simeonov whose coefficient is a 807, we derive corresponding generalized expansions for the Wilson, continuous q-Jacobi, and Jacobi polynomials. By comparing the coefficients of the Askey Wilson expansion to our continuous q-ultraspherical/Rogers expansion, we derive a new quadratic transformation for basic hypergeometric functions which relates an 8 phi 7 to a 2 phi 1. We also obtain several definite integral representations which correspond to the above mentioned expansions through the use of orthogonality. Published by Elsevier Inc.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2019_01_068.pdf 482KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:1次