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Abstract. We derive a generalization of the Rogers generating function for the continuous
q-ultraspherical/Rogers polynomials whose coefficient is a 2φ1. From that expansion, we de-
rive corresponding specialization and limit transition expansions for continuous q-Hermite,
continuous q-Legendre, Laguerre, and Chebyshev polynomials of the first kind. Using a
recent generalized expansion of the Rogers generating function in terms of Askey-Wilson
polynomials by Ismail & Simeonov whose coefficient is a 8φ7, we derive corresponding gen-
eralized expansions for Wilson, continuous q-Jacobi, and Jacobi polynomials. By comparing
the coefficients of the Askey-Wilson expansion to our continuous q-ultraspherical/Rogers
expansion, we derive a new quadratic transformation for basic hypergeometric functions
which relates an 8φ7 to a 2φ1. We also obtain several definite integral representations which
correspond to the above mentioned expansions through the use of orthogonality.
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Generating functions; Connection coefficients; Eigenfunction expansions; Definite integrals.
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1 Introduction

In the context of generalized hypergeometric orthogonal polynomials, the first author and col-
laborators developed in [5, (2.1)] a series rearrangement technique which we utilize in the
present context to produce a generalization of the generating function for the continuous q-
ultraspherical/Rogers polynomials. This technique is valid for a larger class of hypergeometric
orthogonal polynomials. For instance, in [4], we applied this same technique to the Jacobi poly-
nomials and in [7], we extended this technique to many generating functions for the Jacobi,
Gegenbauer, Laguerre, and Wilson polynomials.

The series rearrangement technique combines a connection relation with a generating func-
tion, resulting in a series with multiple sums. The order of summations are then rearranged
and the result often simplifies to produce a generalized generating function whose coefficients
are given in terms of generalized or basic hypergeometric functions. This technique is especially
productive when using connection relations with one free parameter, since the relation is most
often a product of Pochhammer or q-Pochhammer symbols.

Basic hypergeometric orthogonal polynomials with more than one free parameter, such as the
Askey-Wilson polynomials, have multi-parameter connection relations. These connection rela-
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tions are given by single or multiple summation expressions. For the Askey-Wilson polynomials,
the connection relation with four free parameters is given as a basic double hypergeometric series.
The fact that the four free parameter connection coefficient for the Askey-Wilson polynomials
is given by a double sum was known to Askey and Wilson as far back as 1985 (see [19, Section
16.4]). When our series rearrangement technique is applied to cases with more than one free pa-
rameter, the resulting coefficients of the generalized generating function are rarely given in terms
of a basic hypergeometric series. The more general problem of generalized generating functions
with more than one free parameter requires the theory of multiple basic hypergeometric series
and is not treated in this paper.

Through analysis of an Askey-Wilson polynomial expansion due to Ismail & Simeonov [21],
we construct expansions for the Wilson polynomials (Section ??), the continuous q-Jacobi poly-
nomials (Section 4), and the continuous q-ultraspherical/Rogers polynomials and some special-
izations and limit transitions of that expansion (Section 5). In that same section we also derive
a new quadratic transformation for basic hypergeometric functions. In Section 6, we have also
computed new definite integrals corresponding to our generalized generating function expansions
using orthogonality for the orthogonal polynomials we have studied.

In addition of being of independent interest, this investigation was motivated by an applica-
tion of generalized generating functions in the non-q regime [4, 5]. This would be the generation
of q-polyspherical addition theorems in terms of a product of q-zonal harmonics. In order to
compute these q-analogues, one would need to derive a q-analogue of the addition theorem for
the hyperspherical harmonics (see [31]; see also [10, Section 10.2.1])

C
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One would also need q-analogues of a fundamental solution of the polyharmonic equation, and
Laplace’s expansion

1

‖x− x′‖d−2
=

∞∑
l=0

rl<

rl+d−2
>

C
d
2
−1

l (cos γ),

which is the q ↑ 1− limit of the generating function for the continuous q-ultraspherical/Rogers
polynomials, hereafter referred to as the Rogers generating function (see (3.3) below). These
analogues do not exist in the literature, however they may be found by using material from
[13], [17], [25, Section 3], which we will attempt in future publications. Addition theorems for
continuous q-ultraspherical/Rogers polynomials should also be useful here [24].

2 Preliminaries

Throughout the paper, we adopt the following notation to indicate sequential positive and
negative elements, in a list of elements, namely

±a := {a,−a}.
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If the symbol ± appears in an expression, but not in a list, it is to be treated as normal.
In order to obtain our derived identities, we rely on properties of the Pochhammer and q-

Pochhammer symbols, also called shifted and q-shifted factorials respectively. The Pochhammer
symbol for a, b ∈ C, �b > 0 is defined naturally by

(a)b :=
Γ(a+ b)

Γ(a)
,

where a + b �∈ −N0, and if �b < 0 then (a)b := 1/(a + b)−b. For the q-Pochhammer symbol,
a ∈ C, |q| < 1, define

(a; q)∞ :=

∞∏
n=0

(1− aqn), (2.1)

then for b ∈ C, [22, (1.8.9)]

(a; q)b :=
(a; q)∞
(aqb; q)∞

, (2.2)

where the principal value of qb will always be taken and (aqb; q)∞ �= 0. Therefore for n ∈ N0,
one has [22, (1.8.8)]

(a; q)n =
(a; q)∞
(aqn; q)∞

, (2.3)

where (aqn; q)∞ �= 0. We will also use the common notational product conventions

(a1, . . . , ak)b := (a1)b · · · (ak)b,
(a1, . . . , ak; q)b := (a1; q)b · · · (ak; q)b.

We define the q-factorial as [11, (1.2.44)]

[0]q! := 1, [n]q! := [1]q[2]q · · · [n]q, n ≥ 1,

where the q-number is defined as [22, (1.8.1)]

[z]q :=
1− qz

1− q
, z ∈ C.

Note that [n]q! = (q; q)n/(1− q)n.
The following properties for the q-Pochhammer symbol can be found in Koekoek et al. (2010)

[22, (1.8.7), (1.8.10-11), (1.8.14), (1.8.19), (1.8.21-22)], namely for appropriate values of a and
n, k ∈ N0,

(a; q)n+k = (a; q)k(aq
k; q)n = (a; q)n(aq

n; q)k, (2.4)

(a2; q2)n = (±a; q)n. (2.5)

Observe that by using (2.3) and (2.5), we get

(aqn; q)n =
(±√a,±√aq; q)n

(a; q)n
. (2.6)

Lemma 2.1. Let n ∈ N0, q, a, b ∈ C, 0 < |q| < 1. Then

(a; q)n+b = (a; q)n(aq
n; q)b. (2.7)
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Proof. Follows from the identity (2.2) and (2.3). �

Lemma 2.2. Let q, a, b ∈ C, 0 < |q| < 1. Then

lim
q↑1−

(qa; q)b
(1− q)b

= (a)b. (2.8)

Proof. Define the q-gamma function Γq by [22, (1.9.1)]

Γq(x) :=
(1− q)1−x(q; q)∞

(qx; q)∞
,

and the arbitrary q-Pochhammer symbol by (2.2). Observe that, by using (2.7), if �b < 0 then

(a; q)b :=
1

(aqb; q)−b
. (2.9)

• If a + b ∈ −N0 then the result is straightforward by definition since (−n)n = 0 and
(q−n; q)n = 0 for any n ∈ N0.

• If �b > 0 then

lim
q↑1−

(qa; q)b
(1− q)b

= lim
q↑1−

(qa; q)∞
(1− q)b(qa+b; q)∞

= lim
q↑1−

Γq(a+ b)

Γq(a)
= (a)b,

since [22, Section 1.9] limq↑1− Γq(x) = Γ(x).

• If �b < 0 then

lim
q↑1−

(qa; q)b
(1− q)b

(2.9)
= lim

q↑1−
(1− q)−b

(qa+b; q)−b
= lim

q↑1−
(1− q)−b(qa; q)∞

(qa+b; q)∞
= lim

q↑1−
Γq(a+ b)

Γq(a)
= (a)b.

This completes the proof. �

We also take advantage of the q-binomial theorem [22, (1.11.1)]

1φ0

(
a

− ; q, z

)
=

(az; q)∞
(z; q)∞

, |z| < 1, (2.10)

where we have used (2.1). The basic hypergeometric series, which we often use, is defined as
[22, (1.10.1)]

rφs

(
a1, . . . , ar
b1, . . . , bs

; q, z

)
:=

∞∑
k=0

(a1, . . . , ar; q)k
(q, b1, . . . , bs; q)k

(
(−1)kq(k2)

)1+s−r
zk. (2.11)

Let us prove some inequalities that we later use.

Lemma 2.3. Let j ∈ N, k, n ∈ N0, z ∈ C, �u > 0, v ≥ 0, and 0 < |q| < 1. Then∣∣∣∣ (qu; q)j(1− q)j

∣∣∣∣ ≥ |[�u]q[j − 1]q!| , (2.12)∣∣∣∣(qu; q)n(q; q)n

∣∣∣∣ ≤ ∣∣[1 + n]uq
∣∣ , (2.13)

∣∣∣∣ (qv+k; q)n
(qu+k; q)n

∣∣∣∣ ≤
∣∣∣∣∣ [n+ 1]v+1

q

[�(u)]q

∣∣∣∣∣ . (2.14)
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Proof. If 0 < |q| < 1 then

∣∣∣∣ (qu; q)j(1− q)j

∣∣∣∣ = j−1∏
k=1

∣∣∣∣1− qu+k−1

1− q

∣∣∣∣ ≥ ∣∣∣∣1− qu

1− q

∣∣∣∣ j−1∏
k=1

∣∣∣∣1− qk

1− q

∣∣∣∣ ≥ |[�(u)]q[j − 1]q!| .

This completes the proof of (2.12). Choose m ∈ N0 such that m ≤ u ≤ m+1. Then qm+1 ≤ qu,
so ∣∣∣∣(qu; q)n(q; q)n

∣∣∣∣ = n−1∏
k=0

∣∣∣∣1− qu+k

1− q1+k

∣∣∣∣ ≤ n∏
k=1

∣∣∣∣1− qm+k

1− qk

∣∣∣∣ = m∏
k=1

∣∣∣∣1− qn+k

1− qk

∣∣∣∣ ≤ ∣∣[n+ 1]mq
∣∣ ≤ ∣∣[n+ 1]uq

∣∣ .
This completes the proof of (2.13). Without loss of generality we assume u > 0. If v ≤ u then
the inequality is clear, so let us assume that 0 < u < v. Since 0 < |q| < 1 and for t ≥ 0,

t+ v

t+ u
≤ v

u
,

and we have∣∣∣∣ (qv+k; q)n
(qu+k; q)n

∣∣∣∣ ≤ ∣∣∣∣ (qv)n(qu)n

∣∣∣∣ ≤ ∣∣∣∣ 1

[u]q

(qv)n
[n− 1]q!(1− q)n

∣∣∣∣ .
Choose m ∈ N so that m− 1 < v ≤ m. Then∣∣∣∣ (qv+k; q)n
(qu+k; q)n

∣∣∣∣ ≤ ∣∣∣∣ 1

[u]q

[n]q(q
m; q)n

(q; q)n

∣∣∣∣ = ∣∣∣∣ 1

[u]q

[n]q(q
n; q)m−1

(q; q)m−1

∣∣∣∣ ≤ ∣∣∣∣ 1

[u]q
[n]q[n+ 1]m−1

q

∣∣∣∣ ≤ ∣∣∣∣ 1

[u]q
[n+ 1]v+1

q

∣∣∣∣ .
This completes the proof of (2.14). �

As we have mentioned previously, we need to assure that one can rearrange certain series
expressions. The following result is necessary in order guarantee the validity of such actions. If
an infinite series is absolutely convergent then all of its rearrangements converge to the same
sum.

Lemma 2.4. Let n, k ∈ N0, a, b, be sets of parameters associated with polynomial sequences
(pn) and (p̃n). Furthermore, assume that the polynomial sequences satisfy the following identities

p̃n(x; a) =

n∑
k=0

ck,n(a,b) pk(x;b),

∞∑
n=0

an(a)pn(x; a) = F (x,a),

for some coefficients an, ck,n ∈ C. Then one can justify the rearrangement of the two series as

∞∑
n=0

an(a)
n∑

k=0

ck,n(a,b)pk(x;b) =
∞∑
k=0

pk(x;b)
∞∑
n=k

an(a)ck,n(a,b),

if one can verify

∞∑
n=0

|an(a)|
n∑

k=0

∣∣ck,n(a,b)pk(x;b)∣∣ <∞.
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3 Expansions for Askey-Wilson and Wilson polynomials

The Askey-Wilson polynomials can be defined as [22, (14.1.1)]

pn(x; a|q) := a−n
1 (a1a2, a1a3, a1a4; q)n 4φ3

(
q−n, a1a2a3a4q

n−1, a1e
iθ, a1e

−iθ

a1a2, a1a3, a1a4
; q, q

)
,

where x = cos θ, a := {a1, a2, a3, a4}. In [21, Theorem 4.2] the following Askey-Wilson polyno-
mial expansion of the Rogers generating function [22, (14.10.27)] is proven.

Theorem 3.1 (Ismail & Simeonov (2015)). Let t, β, q ∈ C, max{|a1|, |a2|, |a3|, |a4|, |t|, |q|} < 1,
x = cos θ ∈ (−1, 1). Then

(tβeiθ, tβe−iθ; q)∞
(teiθ, te−iθ; q)∞

=
∞∑
n=0

cn(β, t, a; q)pn(x; a|q), (3.1)

where

cn(β, t, a; q) :=
tn(β; q)n(q

na1βt, q
na2βt, q

na3βt, q
na1a2a3t; q)∞

(q, qn−1a1a2a3a4; q)n(a1t, a2t, a3t, q2na1a2a3βt; q)∞
Fβ,t,a;qn ,

Fβ,t,a;qn := 8φ7

(
q2n−1a1a2a3βt,±qn+ 1

2 (a1a2a3βt)
1
2 , qna1a2, q

na1a3, q
na2a3, βta

−1
4 , qnβ

±qn− 1
2 (a1a2a3βt)

1
2 , qna1βt, qna2βt, qna3βt, q2na1a2a3a4, qna1a2a3t

; q, a4t

)

= 8W7(q
2n−1a1a2a3βt; q

na1a2, q
na1a3, q

na2a3, βta
−1
4 , qnβ; q, a4t),

and [11, (2.1.11)]

8W7(a1; a4, . . . , a8; q, z) := 8φ7

⎛⎝ a1,±qa
1
2
1 , a4, . . . , a8

±a
1
2
1 , qa1/a4, . . . , qa1/a8

; q, z

⎞⎠ , (3.2)

defines the very-well poised hypergeometric series 8W7.

Remark 3.2. Note (3.1) is a generalization of the Rogers generating function (the generating
function where the coefficient multiplying tn is unity) [22, (14.10.27)]

(tβeiθ, tβe−iθ; q)∞
(teiθ, te−iθ; q)∞

=

∞∑
n=0

Cn(x;β|q)tn, x = cos θ, (3.3)

where Cn(x;β|q) is the continuous q-ultraspherical/Rogers polynomial (see Section 5 below).

Remark 3.3. Note that to compute such basic hypergeometric functions, it is convenient to use
(2.6).

3.1 The Wilson limit for the Ismail-Simeonov Expansion

In this section we obtain a new infinite series over the Wilson polynomials Wn [22, Section 9.1]
whose left hand side is given by a ratio of gamma functions. We will see that this identity
follows formally from the Ismail-Simeonov expansion over Askey-Wilson polynomials (3.1) by
taking the q ↑ 1 limit.

Let b, ak ∈ C, k = 1, 2, 3, 4. Define a := {a1, a2, a3, a4}, a+ b := {a1+ b, a2+ b, a3+ b, a3+ b},
a12 := a1+a2, a13 := a1+a3, a23 := a2+a3, a123 := a1+a2+a3, a1234 := a1+a2+a3+a4, etc.
Note again that we use the compact product notation for a, b ∈ C, Γ(a± b) := Γ(a+ b)Γ(a− b).



On a generalization of the Rogers generating function 7

Lemma 3.4. Let n ∈ N0, t, u, ak ∈ C, k = 1, 2, 3, 4, �(a1234 + t− u) > 3
2 . Then∫ ∞

0

Γ(t± ix)Γ(a1 ± ix) · · ·Γ(a4 ± ix)

Γ(u± ix)Γ(±2ix) Wn(x
2;a)dx

= (u− t)n

∫ ∞

0

Γ(t− 1
2n± ix)Γ(a1+

1
2n± ix) · · ·Γ(a4+ 1

2n± ix)

Γ(u+ 1
2n± ix)Γ(±2ix) dx

= (u− t)n

∫ ∞

0

Γ(t− 1
2n± ix)W(x; a+ 1

2n)

Γ(u+ 1
2n± ix)

dx. (3.4)

Proof. The weight function for the Wilson polynomials is [22, (9.1.2)]

W(x; a) :=
Γ(a1 ± ix)Γ(a2 ± ix)Γ(a3 ± ix)Γ(a4 ± ix)

Γ(±2ix) . (3.5)

Define W̃(x; a) := (2ix)−1W(x; a). The Rodrigues-type formula for Wilson polynomials is [22,
(9.1.11)]

W̃(x; a)Wn(x
2;a) =Wn W̃

(
x; a+ 1

2n
)
, (3.6)

where W is the Wilson (divided difference) operator (see e.g., [20], [22, Section 1.16])

Wf(x) :=
δf(x)

δx2
:=

1

2ix

(
f
(
x+ i

2

)− f
(
x− i

2

))
. (3.7)

Substitute (3.6) in the left-hand side of (3.4) and integrate by parts using (3.7) and [20, Theorem
9.1], along with the identity

−W Γ(t± ix)

Γ(u± ix)
=

Γ(t− 1
2 ± ix)

Γ(u+ 1
2 ± ix)

=⇒ (−1)nWn Γ(t± ix)

Γ(u± ix)
= (u− t)n

Γ(t− n
2 ± ix)

Γ(u+ n
2 ± ix)

,

demonstrates (3.4). �

A powerful integral representation of a very-well poised 7F6(1) which we rely on to derive
the Wilson polynomial expansion formula below, is the q ↑ 1 limit of the Nassrallah-Rahman
integral (6.3), which can be found in [11, (6.3.11)], [26, (1.17)].

Lemma 3.5 (Rahman (1986)). Let n ∈ N0, t, u, ak ∈ C, k = 1, 2, 3, 4, �(a4 + t) > 0, �(a1234 +
t− u) > 3

2 . Then∫ ∞

0

Γ(t± ix)Γ(a1 ± ix) · · ·Γ(a4 ± ix)

Γ(u± ix)Γ(±2ix) dx

=
2πΓ(u+ a123)Γ(a12) · · ·Γ(a34)Γ(t+ a1)Γ(t+ a2)Γ(t+ a3)

Γ(u+ a1)Γ(u+ a2)Γ(u+ a3)Γ(a1234)Γ(t+ a123)
J(t, u,a), (3.8)

where

J(t, u,a) := 7F6

(
a123 + u− 1, 12(a123 + u+ 1), a12, a13, a23, u− a4, u− t
1
2(a123 + u− 1), u+ a1, u+ a2, u+ a3, a1234, t+ a123

; 1

)
.

Proof. See [11, (6.3.11)], [26, (1.17)]. The condition �(a4+ t) > 0 follows from the requirement
of uniform convergence of the 7F6(1) [8, (16.2.2)]. The condition �(a1234 + t − u) > 3

2 follows
since the integrand clearly vanishes at the origin by applying Stirling’s formula [8, (5.11.7)] on
the integrand as x→ +∞. �
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Remark 3.6. Observe that the generalized hypergeometric function 7F6 in (3.8) is very-well
poised and of argument unity. Using Bailey’s W notation for a very-well poised 7F6 of argument
unity (see for instance, [14, p. 2])

W (a; b, c, d, e, f) := 7F6

(
a, a2 + 1, b, c, d, e, f

a
2 , 1 + a− b, 1 + a− c, 1 + a− d, 1 + a− f

; 1

)
.

In our case, the 7F6(1) can be written as

W (a123 + u− 1; a12, a13, a23, u− a4, u− t).

Theorem 3.7. Let x ∈ (0,∞), t, u, a1, a2, a3, a4 ∈ C, �(a1234+ t−u) > 3
2 , �(at+ t) > 0. Then

Γ(t+ ix)Γ(t− ix)

Γ(u+ ix)Γ(u− ix)
=

(a123)u(a1, a2, a3)t
(a123)t(a1, a2, a3)u

×
∞∑
n=0

(u− t, a1234 − 1)n(a123 + u)2n K(t, u,a)Wn(x
2;a)

n!(a1 + u, a2 + u, a3 + u, a123 + t)n(a1234 − 1)2n
, (3.9)

where

K(t, u,a) := 7F6

(
a123+u+2n−1, a123+u+2n+1

2 , a12+n, a13+n, a23+n, u−a4, u−t+n
a123+u+2n−1

2 , a1+u+n, a2+u+n, a3+u+n, a123+t+n, a1234+2n
; 1

)
= W (a123+u+2n−1, a12+n, a13+n, a23+n, u−a4, u−t+n).

Proof. Consider the Wilson polynomial expansion

Γ(t+ ix)Γ(t− ix)

Γ(u+ ix)Γ(u− ix)
=

∞∑
n=0

cn(t, u, a)Wn(x
2;a). (3.10)

Using orthogonality for the Wilson polynomials [22, (9.1.2)], one can obtain the coefficient of
the expansion (3.10), namely

cn(t, u,a) =
1

Hn(a)

∫ ∞

0

Γ(t+ ix)Γ(t− ix)

Γ(u+ ix)Γ(u− ix)
Wn(x

2; a)W(x; a)dx, (3.11)

where the Wilson square norm is given by [22, (9.1.2)]

Hn(a) :=

∫ ∞

0
Wn(x

2; a)Wn(x
2;a)W(x; a)dx

=
2πn! Γ(a12 + n)Γ(a13 + n)Γ(a14 + n)Γ(a23 + n)Γ(a24 + n)Γ(a34 + n)

(a1234 − 1 + 2n)Γ(a1234 − 1 + n)
. (3.12)

The integral in (3.11) can be re-expressed as an integral over a shifted weight function for the
Wilson polynomials using Lemma 3.4. Evaluating the resulting definite integral using Lemma 3.5
yields c(t, u,a) in (3.9). Since the Wilson polynomials when normalized represent an orthonormal
basis for L2(W(x; a), (0,∞)), and due to Lemma 3.5, and due to its analyticity,

Γ(t+ ix)Γ(t− ix)

Γ(u+ ix)Γ(u− ix)
∈ L2(W(x; a), (0,∞)),

the definite integral so the series converges in the L2 sense. The conditions for convergence of
Lemma 3.5 are applied to this expansion theorem when the series does not terminate. The series
terminates when u− t ∈ −N0, and in this case all possible values for the parameters are allowed
as long as they are bounded and the functions involved are defined.

�
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Remark 3.8. Note that Theorem 3.7 can also be derived formally by starting with the Ismail-
Simeonov expansion [21, (4.9)]

(ue±iθ; q)∞
(te±iθ; q)∞

:=
(ueiθ, ue−iθ; q)∞
(teiθ, te−iθ; q)∞

=
∞∑
n=0

cn(t, u,a; q)pn(x; a|q),

where

cn(t, u,a; q) =
tn(ut−1; q)n(q

na1u, q
na2u, q

na3u, q
na1a2a3t; q)∞

(q, qn−1a1a2a3a4; q)n(a1t, a2t, a3t, qb1; q)∞
Gt,u,a;q
n ,

Gt,u,a;q
n := 8φ7

⎛⎝ b1,±qb
1
2
1 , q

na1a2, q
na1a3, q

na2a3, ua
−1
4 , qnut−1

±b
1
2
1 , q

na3u, qna2u, qna1u, q2na1a2a3a4, qna1a2a3t
; q, a4t

⎞⎠
= 8W7(b1; q

na1a2, q
na1a3, q

na2a3, ua
−1
4 , qnut−1; q, a4t),

with b1 := q2n−1a1a2a3u. Note that Gβt,t,a;q
n = Fβ,t,a;qn , cf. Theorem 3.1. We apply the substi-

tutions ak 
→ qak , for all k ∈ {1, 2, 3, 4}, eiθ 
→ qix, t 
→ qt, u 
→ qu, multiply both sides by
(1− q)2(u−t) and take the limit as q ↑ 1−. We use (2.7), (2.2), (2.8), and apply the relation [22,
(14.1.21)]

lim
q↑1−

pn((q
ix + q−ix)/2; qa1 , qa2 , qa3 , qa4 |q)

(1− q)3n
= Wn(x

2; a).

[22, (9.1.1)]. Since

1

(t+ ix, t− ix)u−t
=

Γ(t+ ix)Γ(t− ix)

Γ(u+ ix)Γ(u− ix)
,

the result follows.

4 Continuous q-Jacobi polynomials

We would like to examine specialization and limit transition properties for the Ismail & Simeonov
result in terms of the continuous q-Jacobi polynomials. For the continuous q-Jacobi polynomials,
we adopt the standard normalization adopted by Rahman et al. in [22, (14.10.1)]. However, in

order to simplify our formulae we have further replaced qα+
1
2 , qγ+

1
2 
→ α, γ. Using this notation

one has

P (α,γ)
n (x|q) := α

n
2

(q,−(αγ) 1
2 ,−(qαγ) 1

2 ; q)n
pn

(
x;α

1
2 ,−γ 1

2 ,−(qγ) 1
2 , (qα)

1
2 |q)

=
(q

1
2α; q)n
(q; q)n

4φ3

(
q−n, qnαγ, α

1
2 eiθ, α

1
2 e−iθ

q
1
2α,−(αγ) 1

2 ,−(qαγ) 1
2
; q, q

)
. (4.1)

Note that some consequences of this notation are

Cn(x;β|q) = β−n
2
(β2; q)n

(q
1
2β; q)n

P (β,β)
n (x|q),

and

lim
q↑1−

P

(
qα+1

2 ,qγ+
1
2

)

n (x|q) = P (α,γ)
n (x), (4.2)

where P
(α,γ)
n is the Jacobi polynomial [8, (18.5.7)].
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Corollary 4.1. Let |q|, |t|, |α|, |β|, |γ| < 1, x = cos θ ∈ (−1, 1). Then

(tβeiθ, tβe−iθ; q)∞
(teiθ, te−iθ; q)∞

=

∞∑
n=0

P (α,γ)
n (x|q)Dβ,t,α,γ;q

n , (4.3)

where

Dβ,t,α,γ;q
n :=

(tα−
1
2 )n(β,−(αγ) 1

2 ,−(qαγ) 1
2 ; q)n(q

nα
1
2 βt,−qnγ 1

2 βt,−qn+ 1
2 γ

1
2 βt, qn+

1
2α

1
2 γt; q)∞

(qnαγ; q)n(α
1
2 t,−γ 1

2 t,−(qγ) 1
2 t, q2n+

1
2α

1
2 γβt; q)∞

Hβ,t,α,γ;q
n ,

Hβ,t,α,γ;q
n := 8W7(q

2n− 1
2α

1
2 γβt;−qn(αγ) 1

2 ,−qn+ 1
2 (αγ)

1
2 , qn+

1
2 γ, (qα)−

1
2 βt, qnβ; q, (qα)

1
2 t).

Proof. Let a1 = α
1
2 , a2 = −γ 1

2 , a3 = −(qγ) 1
2 , a4 = (qα)

1
2 , using (3.1), (4.1), the result

follows. �

Note Hβ,t,α,γ;q
n := F

β,t,α
1
2 ,−γ

1
2 ,−(qγ)

1
2 ,(qα)

1
2 ;q

n , cf. Theorem 3.1. Using (4.2) in (4.3), we obtain a
Jacobi generalization of the Gegenbauer generating function

1

(1 + t2 − 2tx)β
=

∞∑
n=0

tn(β)n(α+ γ + 1)nP
(α,γ)
n (x)(

α+γ+1
2

)
n

(
α+γ+2

2

)
n
(1 + t)2(n+β)

2F1

(
γ + n+ 1, n+ β

2n+ α+ γ + 2
;

4t

(1 + t)2

)
,

which is equivalent to [4, (3.1)]

1

(z − x)ν
=

(z − 1)α+1−ν(z + 1)β+1−ν

2α+β+1−ν

×
∞∑
n=0

(2n+ α+ β + 1)Γ(α+ β + n+ 1)(ν)n
Γ(α+ n+ 1)Γ(β + n+ 1)

Q
(α+1−ν,β+1−ν)
n+ν−1 (z)P (α,β)

n (x), (4.4)

where z = (t + t−1)/2 (see Remark 5.1 below), and Q
(α,γ)
ν is the Jacobi function of the second

kind. The q-analogue of the specialization of (4.4) with ν = 1 [30, (9.2.1)]

1

z − x
=

(z − 1)α(z + 1)β

2α+β

∞∑
n=0

(2n+ α+ β + 1)Γ(α+ β + n+ 1)n!

Γ(α+ 1 + n)Γ(β + 1 + n)
Q(α,β)

n (z)P (α,β)
n (x),

is (4.3) with β = q.

5 Continuous q-ultraspherical/Rogers polynomials

The continuous q-ultraspherical/Rogers polynomials are defined as [22, (14.10.17)]

Cn(x;β|q) := (β; q)n
(q; q)n

einθ 2φ1

(
q−n, β

β−1q1−n
; q, qβ−1e−2iθ

)
, x = cos θ.

We now derive a generalization of the Rogers generating function (3.3) using the connection
relation for continuous q-ultraspherical/Rogers polynomials [19, (13.3.1)]

Cn(x;β | q) = 1

1− γ

�n/2�∑
k=0

(1− γqn−2k)γk(βγ−1; q)k(β; q)n−k

(q; q)k(qγ; q)n−k
Cn−2k(x; γ|q). (5.1)
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Remark 5.1. Note that the functions x 
→ (2t)−1(1 + t2 − 2tx) and x 
→ z − x are identical
through the Szegő transformation

z =
t+ t−1

2
,

which maps circles in the complex plane to ellipses with foci at ±1, with the unit circle being
mapped to the line segment [−1, 1]. Both of these functions appear in the analysis below. The
Rogers generating function (3.3) is a q-analogue of the generating function for the Gegenbauer
polynomials [8, (18.12.4)], [12]

1

(1 + t2 − 2tx)μ
=

∞∑
n=0

tnCμ
n(x), (5.2)

which has already been generalized in [5, Theorem 2.1]

1

(z − x)ν
=

2μ+
1
2Γ(μ)eiπ(μ−ν+ 1

2
)

√
π Γ(ν)(z2 − 1)

ν−μ
2

− 1
4

∞∑
n=0

(n+ μ)Q
ν−μ− 1

2

n+μ− 1
2

(z)Cμ
n(x), (5.3)

where Qμ
ν : C \ (−∞, 1] → C is the associated Legendre function of the second kind defined in

terms of the Gauss hypergeometric function, ν + μ+ 1 /∈ −N0, [8, (14.3.7)]

Qμ
ν (z) :=

√
π eiπμΓ(ν + μ+ 1)(z2 − 1)

μ
2

2ν+1Γ(ν + 3
2)z

ν+μ+1 2F1

(
ν+μ+1

2 , ν+μ+2
2

ν + 3
2

;
1

z2

)
.

Theorem 5.2. Let x = cos θ ∈ (−1, 1), |t| < 1, β, γ ∈ (−1, 1) \ {0}, 0 < |q| < 1. Then

(tβeiθ, tβe−iθ; q)∞
(teiθ, te−iθ; q)∞

=

∞∑
n=0

(β; q)n
(γ; q)n

2φ1

(
βγ−1, βqn

γqn+1 ; q, γt2
)
Cn(x; γ|q) tn. (5.4)

Proof. The proof follows as above by starting with (3.3), inserting (5.1), shifting the n index
by 2k, reversing the order of summation. We use (2.4) through (2.11), since |an| = |t|n, |cn,k| ≤
K6[n+1]σ3

q , |Cn(x;β|q)| ≤ Cn(1;β|q) ≤ [n+1]σ4
q , where σ3 := 2b−c+2, σ4 := 2b+2, with β = qb,

γ = qc. Note that |Cn(x;β|q)| ≤ Cn(1;β|q), q, β ∈ (−1, 1) is given in [2, (3.19)]. Therefore for
n sufficiently large,

|Cn(x;β|q)| ≤ [n+ 1]σ4
q ≤ (n+ 1)σ4 , (5.5)

where K6 = 1/[�(c+ 1)]q, and σ3 and σ4 are independent of n. Then, since

∞∑
n=0

|an|
�n/2�∑
k=0

|ck,n||Ck(x;β|q)| ≤ K6

∞∑
n=0

|t|n(n+ 1)σ3+σ4+1 <∞,

by Lemma 2.4, the result is proven. �

Remark 5.3. Coefficients of derived generalized generating functions such as (5.4) are amenable
to situations where summation theorems for basic hypergeometric functions (see for instance [8,
Sections 17.5–17.7]) may be utilized. When applicable, one may used these summation theorems
to compute alternative expansions. Some of these expansions may not be interesting, as they no
longer represent generating functions. Take for example Theorem 5.2. If you use the q-Gauss
sum [8, (17.6.1)]

2φ1

(
a, b

c
; q, c/(ab)

)
=

(c/a, c/b; q)∞
(c, c/(ab); q)∞

,
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on the coefficient of the expansion, and make the appropriate substitutions and simplifications,
it becomes

(tβeiθ, tβe−iθ; q)∞
(teiθ, te−iθ; q)∞

=
(βt2, β3t4q−1; q)∞
(β2t4q−1, β2t2; q)∞

∞∑
n=0

(β, β2t2; q)n
(β2t2q−1, β3t4q−1; q)n

Cn(x;β
2t2q−1|q) tn,

which is an alternative expansion of the Rogers generating function. However, it is not a gener-
ating function since t appears in the parameter of the polynomial as well as in the q-Pochhammer
coefficients.

By using Theorem 5.2 as a starting point, there are a number of interesting results which
follow.

5.1 Continuous q-Hermite polynomials

One may derive an expansion of a specialized Rogers generating function in terms of the con-
tinuous q-Hermite polynomials defined as

Hn(x|q) := einθ 2φ0

(
qn, 0

− ; q, qne−2iθ

)
,

where x = cos θ. Using [22, (14.10.34)]

lim
β→0

Cn(x;β|q) = Hn(x|q)
(q; q)n

,

one obtains

(tβeiθ, tβe−iθ; q)∞
(teiθ, te−iθ; q)∞

=
∞∑
n=0

(β; q)n
(q; q)n

tn 1φ1

(
βqn

0
;βt2

)
Hn(x|q). (5.6)

One can see that by setting β = 0 in (5.6), that this is a generalization of the generating function
for continuous q-Hermite polynomials, namely [22, (14.26.11)]

1

(teiθ, te−iθ; q)∞
=

∞∑
n=0

tn

(q; q)n
Hn(x|q). (5.7)

5.2 Chebyshev polynomials of the first kind

We also derive an expansion of the Rogers generating function in terms of the Chebyshev poly-
nomials of the first kind Tn(cos θ) = cos(nθ). The following corollary is a q-analogue of [6,
(3.10)]

1

(z − x)ν
=

√
2

π

eiπ(
1
2
−ν)

Γ(ν)(z2 − 1)
ν
2
− 1

4

∞∑
n=0

εnQ
ν− 1

2

n− 1
2

(z)Tn(x), (5.8)

which is a generalization of Heine’s reciprocal square root identity [16, p. 286]

1√
z − x

=

√
2

π

∞∑
n=0

εnQn− 1
2
(z)Tn(x). (5.9)

The q-analogue of (5.9) is (5.10) with β = q
1
2 . We have used the common convention Qν := Q0

ν ,
and εn := 2− δn,0, is called the Neumann factor.
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Corollary 5.4. Let x = cos θ ∈ (−1, 1), |t| < 1, β, γ ∈ (−1, 1) \ {0}, 0 < |q| < 1. Then

(tβeiθ, tβe−iθ; q)∞
(teiθ, te−iθ; q)∞

=
∞∑
n=0

εn
(β; q)n
(q; q)n

tn 2φ1

(
β, βqn

qn+1
; t2

)
Tn(x). (5.10)

Proof. Using [22, p. 474]

lim
β→0

(qβ+1; q)n
(qβ ; q)n

Cn(x; q
β |q) = εn Tn(x),

the proof follows. �

5.3 Continuous q-Legendre polynomials

Furthermore, (5.4) produces the following result in terms of the continuous q-Legendre polyno-
mials which can be defined in terms of the continuous q-ultraspherical/Rogers polynomials by
[22, p. 478]

Pn(x|q) := q
n
4 Cn(x; q

1
2 |q).

Corollary 5.5. Let x = cos θ ∈ (−1, 1), |t| < 1, β, γ ∈ (−1, 1) \ {0}, 0 < |q| < 1. Then

(tβeiθ, tβe−iθ; q)∞
(teiθ, te−iθ; q)∞

=
∞∑
n=0

(β; q)n

(q
1
2 ; q)n

(tq−
1
4 )n 2φ1

(
βq−

1
2 , βqn

qn+
3
2

; q
1
2 t2

)
Pn(x|q). (5.11)

Using [22, (14.10.49)]

lim
q↑1−

Pn(x|q) = Pn(x),

where Pn is the Legendre polynomial defined by [22, (9.8.62)]

Pn(x) := 2F1

(−n, n+ 1

1
;
1− x

2

)
,

one can see that (5.11) is a q-analogue of [5, (14)]

1

(z − x)ν
=

eiπ(1−ν)(z2 − 1)(1−ν)/2

Γ(ν)

∞∑
n=0

(2n+ 1)Qν−1
n (z)Pn(x), (5.12)

which in itself is a generalization of Heine’s formula [15]

1

z − x
=

∞∑
n=0

(2n+ 1)Qn(z)Pn(x). (5.13)

The q-analogue of Heine’s formula is (5.11) with β = q.

The above analysis is summarized as a hierarchical scheme in Figures 1 and 2.
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continuous q-Legendre, Legendre, continuous q-ultraspherical/Rogers, Gegenbauer, Chebyshev of the first kind, and continuous q-Hermite polynomials.

1

(z − x)ν
=

(z2 − 1)
ν−1
2

Γ(ν)eiπ(ν−1)

∞∑
n=0

(2n+ 1)Qν−1
n (z)Pn(x)

(5.12) : (13) in Cohl (2013) [5]

(tβeiθ, tβe−iθ; q)∞
(teiθ, te−iθ; q)∞

=
∞∑
n=0

(β; q)n

(q
1
2 ; q)n

(tq−
1
4 )n 2φ1

(
βq−

1
2 , βqn

qn+
3
2

; q
1
2 t2

)
Pn(x|q)

(5.11) : q-analogue (continuous q-Legendre polynomials)

1

z − x
=

∞∑
n=0

(2n+ 1)Qn(z)Pn(x)

(5.13) : Heine (1878) [15] Heine’s formula

(tqeiθ, tqe−iθ; q)∞
(teiθ, te−iθ; q)∞

=
∞∑
n=0

(q; q)n

(q
1
2 ; q)n

(tq−
1
4 )n 2φ1

(
q

1
2 , qn+1

qn+
3
2

; q
1
2 t2

)
Pn(x|q)

(5.11) with β = q : q-analogue (continuous q-Legendre polynomial)

1

z − x
=

2μ+
1
2Γ(μ)eiπ(μ−

1
2
)

√
π (z2 − 1)−

μ
2
+ 1

4

∞∑
n=0

(n+ μ)Q
−μ+ 1

2

n+μ− 1
2

(z)Cμ
n(x)

(7.2) in Durand et al. (1976) [9]

(tqeiθ, tqe−iθ; q)∞
(teiθ, te−iθ; q)∞

=

∞∑
n=0

(q; q)n
(γ; q)n

tn 2φ1

(
qγ−1, qn+1

γqn+1
; γt2

)
Cn(x; γ|q)

(5.4) with β = q : q-analogue (continuous q-ultraspherical/Rogers polynomials)

1

(teiθ, te−iθ; q)∞
=

∞∑
n=0

tn

(q; q)n
Hn(x|q)

(5.7) : generating function for continuous q-Hermite polynomials

(tβeiθ, tβe−iθ; q)∞
(teiθ, te−iθ; q)∞

=
∞∑
n=0

(β; q)n
(q; q)n

tn 1φ1

(
βqn

0
;βt2

)
Hn(x|q)

(5.6) : q-expansion (continuous q-Hermite polynomials)

1√
z − x

=

√
2

π

∞∑
n=0

εnQn− 1
2
(z)Tn(x)

(5.9) : Heine (1881) [16] reciprocal square root identity (1881)

(tq
1
2 eiθ, tq

1
2 e−iθ; q)∞

(teiθ, te−iθ; q)∞
=

∞∑
n=0

εn
(q

1
2 ; q)n

(q; q)n
tn 2φ1

(
q

1
2 , qn+

1
2

qn+1
; t2

)
Tn(x)

(5.10) with β = q
1
2 : q-analogue (Chebyshev polynomials of the first kind)

1

(z − x)ν
=

√
2

π

(z2 − 1)−
ν
2
+ 1

4

eiπ(ν−
1
2
)Γ(ν)

∞∑
n=0

εnQ
ν− 1

2

n− 1
2

(z)Tn(x)

(5.8) : (3.10) in Cohl & Dominici (2011) [6]

(tβeiθ, tβe−iθ; q)∞
(teiθ, te−iθ; q)∞

=
∞∑
n=0

εn
(β; q)n
(q; q)n

tn 2φ1

(
β, βqn

qn+1
; t2

)
Tn(x)

(5.10) : q-analogue (Chebyshev polynomial of the first kind)

1

(1 + t2 − 2tx)ν
=

∞∑
n=0

tnCν
n(x)

(5.2) : Gegenbauer (1874) [12] generating function

(tβeiθ, tβe−iθ; q)∞
(teiθ, te−iθ; q)∞

=
∞∑
n=0

tnCn(x;β|q)

(3.3) : Rogers (1893) [29] generating function

1

(z − x)ν
=

2μ+
1
2Γ(μ)eiπ(μ−ν+ 1

2
)

√
π Γ(ν)(z2 − 1)

ν−μ
2

− 1
4

∞∑
n=0

(n+ μ)Q
ν−μ− 1

2

n+μ− 1
2

(z)Cμ
n(x)

(5.3) : Theorem 2.1 in Cohl (2013) [5]

(tβeiθ, tβe−iθ; q)∞
(teiθ, te−iθ; q)∞

=

∞∑
n=0

(β; q)n
(γ; q)n

tn 2φ1

(
βγ−1, βqn

γqn+1 ; q, γt2
)
Cn(x; γ|q)

(5.4) : q-analogue (continuous q-ultraspherical/Rogers polynomials)
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Figure 2. A hierarchy of generalized Rogers generating functions which connects expansions of classical

and q-hypergeometric orthogonal polynomials for the continuous q-ultraspherical/Rogers, Gegenbauer,

continuous q-Jacobi, Jacobi, Wilson, and Askey-Wilson polynomials.

1

(z − x)ν
=

2μ+
1
2Γ(μ)eiπ(μ−ν+ 1

2
)

√
π Γ(ν)(z2 − 1)

ν−μ
2

− 1
4

∞∑
n=0

(n+ μ)Q
ν−μ− 1

2

n+μ− 1
2

(z)Cμ
n(x)

(5.3) : Theorem 2.1 in Cohl (2013) [5]

(tβeiθ, tβe−iθ; q)∞
(teiθ, te−iθ; q)∞

=

∞∑
n=0

(β; q)n
(γ; q)n

tn 2φ1

(
βγ−1, βqn

γqn+1 ; q, γt2
)
Cn(x; γ|q)

(5.4) : q-analogue (continuous q-ultraspherical/Rogers polynomials)

1

z − x
=

(z − 1)α(z + 1)β

2α+β

∞∑
n=0

(2n+ α+ β + 1)Γ(α+ β + n+ 1)n!

Γ(α+ 1 + n)Γ(β + 1 + n)
Q(α,β)

n (z)P (α,β)
n (x)

(9.2.1) in Szegő (1959) [30]

(tβeiθ, tβe−iθ; q)∞
(teiθ, te−iθ; q)∞

=

∞∑
n=0

dn(q, t, α, γ, q)P
(α,γ)
n (x|q)

(4.3) with β = q : q-analogue (continuous q-Jacobi polynomials)

1

(z − x)ν
=

(z − 1)α+1−ν(z + 1)β+1−ν

2α+β+1−ν

∞∑
n=0

(2n+ α+ β + 1)Γ(α+ β + n+ 1)(ν)n
Γ(α+ n+ 1)Γ(β + n+ 1)

Q
(α+1−ν,β+1−ν)
n+ν−1 (z)P (α,β)

n (x)

Theorem 1 in Cohl (2013) [4]

(tβeiθ, tβe−iθ; q)∞
(teiθ, te−iθ; q)∞

=

∞∑
n=0

dn(β, t, α, γ, q)P
(α,γ)
n (x|q)

dn(β, t, α, γ, q) :=
(tα− 1

2 )n(β,−(αγ) 1
2 ,−(qαγ) 1

2 ; q)n(q
nα

1
2βt,−qnγ 1

2βt,−qn+ 1
2 γ

1
2βt, qn+

1
2α

1
2 γt; q)∞

(qnαγ; q)n(α
1
2 t,−γ 1

2 t,−(qγ) 1
2 t, q2n+

1
2α

1
2 γβt; q)∞

× 8φ7

(
q2n−

1
2α

1
2 γβt,±qn+ 3

4α
1
4 (γβt)

1
2 ,−qn(αγ) 1

2 ,−qn+ 1
2 (αγ)

1
2 , qn+

1
2 γ, (qα)−

1
2βt, qnβ

±qn− 1
4α

1
4 (γβt)

1
2 , qnα

1
2βt,−qnγ 1

2βt,−qn+ 1
2 γ

1
2βt, q2n+1αγ, qn+

1
2α

1
2 γt

; q, (qα)
1
2 t

)
(4.3) : q-analogue (continuous q-Jacobi polynomials)

Γ(t+ ix)Γ(t− ix)

Γ(tβ + ix)Γ(tβ − ix)
=

∞∑
n=0

(t(β − 1))n(a123 + n+ t)n+t(β−1)Wn(x
2;a)

n!(n− 1 + a1234)n(a1 + t, a2 + t, a3 + t)n+t(β−1)

×7F6

(
2n− 1 + a123 + tβ, 2n+1+a123+tβ

2 , n+ a12, n+ a13, n+ a23, tβ − a4, n+ t(β − 1)
2n−1+a123+tβ

2 , n+ a1 + tβ, n+ a2 + tβ, n+ a3 + tβ, 2n+ a1234, n+ a123 + t
; 1

)

(3.9) : Wilson limit of Ismail-Simeonov generalized generating function

(tβeiθ, tβe−iθ; q)∞
(teiθ, te−iθ; q)∞

=

∞∑
n=0

cn(β, t, a, q)pn(x;a|q)

cn(β, t, a, q) :=
tn(β; q)n(q

na1u, q
na2u, q

na3u, tq
na1a2a3; q)∞

(q, qn−1a1a2a3a4; q)n(ta1, ta2, ta3, q2na1a2a3βt; q)∞

× 8φ7

(
q2n−1a1a2a3βt,±qn+ 1

2 (a1a2a3βt)
1
2 , qna1a2, q

na1a3, q
na2a3, βt/a4, q

nβ

±qn− 1
2 (a1a2a3βt)

1
2 , qna1βt, qna2βt, qna3βt, q2na1a2a3a4, tqna1a2a3

; q, ta4

)

(3.1) : expansion of Rogers generating function in Askey-Wilson polynomials



16 H. S. Cohl, R. S. Costas-Santos, T. V. Wakhare

5.4 A quadratic transformation for basic hypergeometric functions

In (3.1), let a1 
→ γ
1
2 , a2 
→ −γ 1

2 , a3 
→ −(qγ) 1
2 , a4 
→ (qγ)

1
2 , and specializing the Askey-Wilson

polynomials to continuous q-ultraspherical/Rogers polynomials using [22, p. 472]

Cn(x; γ|q) = (γ2; q)n(
q,−γ,±q 1

2 γ; q
)
n

pn
(
x; γ

1
2 ,−γ 1

2 ,−(qγ) 1
2 , (qγ)

1
2 |q),

produces an expansion of the Rogers generating function whose coefficients are an 8φ7. By
comparing the coefficients of this expansion with the generalized Rogers generating function

(5.4), and further replacing (β, γ) 
→ (q−nβ, q−nγ), t 
→ (q/γ)
1
2 t, we derive

2φ1

(
β/γ, β

qγ
; q, qt2

)
=

(q(βt)2, qγt, qt; q)∞
(qβγt, qβt, qt2; q)∞

8φ7

(
βγt,±q(βγt) 1

2 ,±q 1
2 γ,−γ, βγ−1t, β

±(βγt) 1
2 ,±q 1

2 βt,−qβt, qγ2, qγt
; q, qt

)

=
(q(βt)2, qγt, qt; q)∞
(qβγt, qβt, qt2; q)∞

8W7(βγt;±q 1
2 γ,−γ, βγ−1t, β; q, qt). (5.14)

This is a generalization of [21, Corollary 4.4] with β = γ. By re-expressing (5.14), we see that
our procedure has produced a new quadratic transformation for basic hypergeometric functions
(see [27]).

Theorem 5.6. Let 0 < |q| < 1, |qt| < 1, |qt2| < 1. Then

2φ1

(
a, b

qab−1
; q, qt2

)
=

(
q(at)2, qab−1t, qt; q

)
∞

(qa2b−1t, qat, qt2; q)∞
8φ7

(
a2b−1t,±qab− 1

2 t
1
2 ,±q 1

2 ab−1,−ab−1, bt, a

±ab− 1
2 t

1
2 ,±q 1

2 at,−qat, qa2b−2, qab−1t
; q, qt

)

=

(
q(at)2, qab−1t, qt; q

)
∞

(qa2b−1t, qat, qt2; q)∞
8W7

(
a2b−1t;±q 1

2 ab−1,−ab−1, bt, a; q, qt
)
,

which is valid under the transformation t 
→ −t.
Proof. Start with (5.14) and replace (β, ab−1) 
→ (a, b). Given (3.2), the expression for the
very-well poised hypergeometric series 8W7, this completes the proof. �

This quadratic transformation has some interesting consequences. For a = 0 one obtains the
q-binomial theorem (2.10). For t ∈ C, t = iqb−

1
2 , the 2φ1 can be summed by the q-Kummer

(Bailey-Daum) summation [11, (II.9)] (this leads to a very unusual summation of the 8φ7). It
corresponds in the q ↑ 1− limit to the quadratic transformation for the Gauss hypergeometric
function [8, (15.8.21), (15.8.1)]

2F1

(
a, b

a− b+ 1
; t2

)
=

1

(1± t)2a
2F1

(
a, a− b+ 1

2

2a− 2b+ 1
;
±4t

(1± t)2

)
. (5.15)

Note that [27, (4.1)] is a quadratic transformation of basic hypergeometric series which in the
limit q ↑ 1− yields (5.15), but our new quadratic transformation is altogether different.

Remark 5.7. Our quadratic transformation given in Theorem 5.6 has recently been extended by
Rains & Warnaar using Kaneko-Macdonald-type basic hypergeometric series (see [28, Theorem
5.22]).

5.5 Jacobi expansion of (1− x)−ν and associated expansions

From the Jacobi expansion of (z− x)−ν (4.4), we can derive an expansion of (1− x)−ν by using
the limit as z → 1+. Also, this is the corresponding limit of the Wilson polynomial expansion
(3.9) to the Jacobi polynomials. In this subsection we derive this and other limiting expansions,
which generalize [8, (18.18.15)] for ν = −n, n ∈ N0.
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Corollary 5.8. Let x ∈ (−1, 1), ν ∈ C, α, β ∈ C such that �(α− ν + 1) > 0. Then

1

(1− x)ν
=

Γ(α− ν + 1)

2ν

∞∑
n=0

(α+ β + 2n+ 1)Γ(α+ β + 1 + n)(ν)n
Γ(α+ 1 + n)Γ(α+ β + 2− ν + n)

P (α,β)
n (x). (5.16)

Proof. Consider the expansion over Jacobi polynomials

1

(1− x)ν
=

∞∑
n=0

cn(ν, α, β)P
(α,β)
n (x).

Using orthogonality for Jacobi polynomials, one can see that the coefficient of the expansion is
given as

cn(ν, α, β) =
1

hn(α, β)

∫ 1

−1
(1− x)α−ν(1 + x)βP (α,β)

n (x)dx,

where hn(α, β) can be found in [22, (9.8.2)]. This integral can be computed with the assistance
of [8, (18.17.36)] with z = α−ν+1, which implies that for the integral to converge one must have
�(α−ν+1) > 0. Since the function x 
→ (1−x)−ν is analytic (clear from the binomial theorem)
on the segment (−1, 1) which is interior to an ellipse with foci at ±1, then the integrated form
implies the expansion by [8, Section 18.18(i)]. �

It is interesting to see that this expansion can also be obtained from more general expansions
using a limiting procedure. In order to perform these limits termwise, one must justify the
interchange of the limit and the sum. Having already proved the expansion formula, we leave
these justification proofs to the reader.

Remark 5.9 (Formal limit 1). Start with (4.4) and examine the singular behavior of the Jacobi

function of the second kind Q
(α,β)
γ (z) as z → 1+. Starting with the definition of the Jacobi

function of the second kind in terms of the Gauss hypergeometric function, and applying [8,
(15.8.2)], results in the identity

Q(α,β)
γ (z) = −π

2
csc(πα)P (α,β)

γ (z)

+
2α+β−1Γ(α)Γ(β + γ + 1)

Γ(α+ β + γ + 1)(z − 1)α(z + 1)β
2F1

(
γ + 1,−α− β − γ

1− α
;
1− z

2

)
, (5.17)

where P
(α,β)
γ (z) is the Jacobi function of the first kind, α, β, γ ∈ C, such that α+ γ + 1, α+ 1 �∈

−N0, is defined by

P (α,β)
γ (z) :=

Γ(α+ γ + 1)

Γ(α+ 1)Γ(γ + 1)
2F1

(−γ, α+ β + γ + 1

α+ 1
;
1− z

2

)
.

Note that P
(α,β)
γ (z) generalizes the Jacobi polynomials for γ = n ∈ N0. Using (5.17), easily

demonstrates that as z → 1+,

(z − 1)α+1−νQ
(α+1−ν,β+1−ν)
n+ν−1 (z) ∼ 2α−νΓ(α+ 1− ν)Γ(β + 1− ν)

Γ(α+ β − ν + 2 + n)
,

for �(α+ 1− ν) > 0, and (5.16) follows.

Lemma 5.10. Let a, b ∈ C. Then we have as 0 < τ →∞,

Γ(a± iτ)

Γ(b± iτ)
= e±

iπ
2
(a−b)τa−b

{
1 +O(τ−1)

}
, (5.18)

where τa−b takes its principal value.
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Proof. Let δ ∈ (0, π). From [8, (5.11.13)], as z → ∞ with a and b real or complex constants,
provided arg z ≤ π − δ(< π). If one takes z = ±iτ with τ > 0 then the argument restriction
implies arg(±iτ) = ±π/2, and the result follows. �

Remark 5.11 (Formal limit 2). Jacobi polynomials are obtained from Wilson polynomials using
[22, (9.1.18)]

P (α,β)
n (x) = lim

τ→∞
1

τ2nn!
Wn

(
(1− x)τ2

2
;
α+ 1

2
,
α+ 1

2
,
β + 1

2
+ iτ,

β + 1

2
− iτ

)
. (5.19)

Define ν = u− t. Apply (5.19) to (3.9) using (5.18) repeatedly, one obtains

1

(1− x)ν
=

1

2ν

(
α+1
2 , α+1

2

)
t(

α+1
2 , α+1

2

)
t+ν

∞∑
n=0

(ν, α+ β + 1)n

(α+1
2 + u, α+1

2 + u)n(α+ β + 1)2n
P (α,β)
n (x)

× lim
τ→∞ τ2ν+2n

2F3

(
α+ 1 + n, ν + n

α+1
2 + t+ ν + n, α+1

2 + t+ ν + n, α+ β + 2 + 2n
;−τ2

)
.

The above limit of the 2F3 can be computed using the asymptotic expansion for large variables of
the generalized hypergeometric function [8, (16.11.8)] assuming �(α+1−ν) > 0. This completes
the proof.

From the expansion formula for (1− x)−ν in Jacobi polynomials (5.16), one can derive some
interesting specialization and limit consequences. We omit the justification for interchange of
sums and limits to the interested reader.

Corollary 5.12. Let x ∈ (−1, 1), μ ∈ (−1
2 ,∞) \ {0}, ν ∈ C, such that �(μ− ν + 1

2) > 0. Then

1

(1− x)ν
=

22μ−νΓ(μ− ν + 1
2)Γ(μ)√

π Γ(2μ+ 1− ν)

∞∑
n=0

(μ+ n)(ν)n
(2μ+ 1− ν)n

Cμ
n(x). (5.20)

Proof. Specializing (5.16) using the definition of the Gegenbauer polynomials in terms of the
Jacobi polynomials (1.1), which completes the proof. �

Corollary 5.13. Let x ∈ (−1, 1), μ ∈ (−1
2 ,∞) \ {0}, ν ∈ C, such that �(μ− ν + 1

2) > 0. Then

1

(1− x)ν
=

Γ(12 − ν)√
π 2νΓ(1− ν)

∞∑
n=0

εn(ν)n
(1− ν)n

Tn(x), (5.21)

where εn := 2− δn,0 is the Neumann factor.

Proof. Specializing (5.20) using the limit relation for the Chebyshev polynomials of the first
kind Tn(x) with the Gegenbauer polynomials, namely [1, (6.4.13)]

lim
μ→0

n+ μ

μ
Cμ
n(x) = εnTn(x),

which completes the proof. �

The following result generalizes [8, (18.18.19)] for ν = −n, n ∈ N0.

Corollary 5.14. Let x ∈ (0,∞), α > −1, ν ∈ C such that �(α+ 1− ν) > 0. Then

1

xν
= Γ(α+ 1− ν)

∞∑
n=0

(ν)n
Γ(α+ 1 + n)

Lα
n(x). (5.22)
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Proof. Specializing (5.16) using the limit relation for Laguerre polynomials Lα
n(x) with the

Gegenbauer polynomials, namely [22, (9.8.16)]

lim
β→∞

P (α,β)
n

(
1− 2x

β

)
= Lα

n(x),

which completes the proof. �

6 Definite integrals

Consider a sequence of orthogonal polynomials (pk(x;α)) (over a domain A, with positive weight
w(x;α)) associated with a linear functional u, where α is a set of fixed parameters. Define sk,
k ∈ N0 by

s2k :=

∫
A
pk(x;α)pk(x;α)w(x;α) dx.

In order to justify interchange between a generalized generating function via connection relation
and an orthogonality relation for pk, we show that the double sum/integral converges in the
L2-sense with respect to the weight w(x;α). This requires

∞∑
k=0

d2ks
2
k <∞, (6.1)

where dk =

∞∑
n=k

anck,n.

Here an is the coefficient multiplying the orthogonal polynomial in the original generating
function, and ck,n is the connection coefficient for pk (with appropriate set of parameters).

Lemma 6.1. Let u be a classical linear functional and let (pn(x)), n ∈ N0 be the sequence of
orthogonal polynomials associated with u. If |pn(x)| ≤ K(n+1)σγn, with K, σ and γ constants
independent of n, then |sn| ≤ K(n+ 1)σγn|s0|.
Proof. Let n ∈ N0, then

s2n = 〈u, p2n〉 ≤ (K(n+ 1)σγn)2 〈u, 1〉 = (K(n+ 1)σγn)2 s20.

The result follows. �

Given |pk(x;α)| ≤ K(k+1)σγk, withK, σ and γ constants independent of k, an orthogonality
relation for pk, and |t| < 1/γ, one has

∞∑
n=0

|an|
n∑

k=0

|ck,nsk| <∞,

which implies

∞∑
k=0

|dksk| <∞.

Therefore one has confirmed (6.1), indicating that we are justified in reversing the order of our
generalized sums and the orthogonality relations under the above assumptions.

All polynomial families used throughout this paper fulfill such assumptions. See for instance
(5.5). Such inequalities depend entirely on the representation of the linear functional. In this
section we derive integral representations from the infinite series expansions presented in the
previous sections. In all cases, Lemma 6.1 can be applied and we are justified in interchanging
the linear form and the infinite sum.
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6.1 Definite integrals for Askey-Wilson and Wilson polynomials

The orthogonality relation for the Askey-Wilson polynomials is given by [22, (14.1.2)]∫ 1

−1
pm(x; a|q)pn(x; a|q)w(x; a|q)√

1− x2
dx = 2πhn(a|q) δm,n, (6.2)

where a := {a1, a2, a3, a4}, w : (−1, 1)→ [0,∞) is defined by

w(x; a|q) := (e±2iθ; q)∞
(a1e±iθ, a2e±iθ, a3e±iθ, a4e±iθ; q)∞

, x = cos θ,

and

hn(a|q) := (a1a2a3a4q
n−1; q)n(a1a2a3a4q

2n; q)∞
(qn+1, a1a2qn, a1a3qn, a1a4qn, a2a3qn, a2a4qn, a3a4qn; q)∞

.

Corollary 6.2. Let n ∈ N0, x = cos θ ∈ (−1, 1), β ∈ (−1, 1), max{|a1|, |a2|, |a3|, |a4|, |t|} < 1,
cn(β, t, a; q) defined as in (3.1). Then∫ 1

−1

(tβeiθ, tβe−iθ; q)∞
(teiθ, te−iθ; q)∞

pn(x; a|q)w(x; a|q)√
1− x2

dx = 2πhn(a|q)cn(β, t, a; q).

Proof. Multiply (3.1) by w(x; a|q)pn(x; a|q)/
√
1− x2 and integrate over (−1, 1) using (6.2)

produces the desired result. �

Remark 6.3. In [21], the Nassrallah-Rahman integral [11, (6.3.2)] is used extensively in relation
to the Askey-Wilson expansion given in Theorem 3.1. This integral is given as follows. Note
that we temporarily adopt a new notation a12 := a1a2, a13 := a1a3, a14 := a1a4, a123 := a1a2a3,
a1234 := a1a2a3a4, etc., and that we define {a11, . . . , a34} := {a11, a12, a13, a23, a24, a34}. Let
max(|q|, |t|, |a1|, |a2|, |a3|, |a4|) < 1. Then the Nassrallah-Rahman integral is given by

J(t, u, a|q) :=
∫ 1

−1

(ue±iθ; q)∞
(te±iθ; q)∞

w(x; a|q)√
1−x2

dx =
2π(ua1, ua2, ua3, a1234, ta123; q)∞I(t, u,a|q)

(q, ua123, a12, . . . , a34, ta1, ta2, ta3; q)∞
, (6.3)

where

I(t, u, a|q) := 8φ7

(
ua123q

−1,±(ua123q) 1
2 , a12, a13, a23, u/a4, u/t

±(ua123q−1)
1
2 , ua1, ua2, ua3, a1234, ta123

; q, ta4

)

= 8W7(ua123q
−1; a12, a13, a23, u/a4, u/t; q, ta4).

The 8W7(q, ta4) which appears in the Nassrallah-Rahman integral is very-well poised and exactly
matches the requisite parameters for the 8W7 used in Theorem 3.1. The connection between the
Nassrallah-Rahman integral and the coefficients of the Ismail-Simeonov Askey-Wilson expansion
(given in Corollary 6.2) can be seen through the following definite integral identity (a q-analogue
of the definite integral identity (3.4) for the Wilson polynomials)∫ 1

−1

(ue±iθ, e±2iθ; q)∞
(te±iθ, a1e±iθ, . . . , a4e±iθ; q)∞

pn(x; a|q)√
1−x2

dx

= tn(u/t; q)n

∫ 1

−1

(uq
n
2 e±iθ, e±2iθ; q)∞

(tq−
n
2 e±iθ, a1q

n
2 e±iθ, . . . , a4q

n
2 e±iθ; q)∞

dx√
1−x2

= tn(u/t; q)n

∫ 1

−1

(uq
n
2 e±iθ; q)∞w(x; aq

n
2 |q)

(tq−
n
2 e±iθ; q)∞

dx√
1−x2

, (6.4)
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where aq
n
2 := {a1q n

2 , a2q
n
2 , a3q

n
2 , a4q

n
2 }. This identity (6.4) can be derived by using the Rodrigues-

type formula for the Askey-Wilson polynomials [22, (14.1.12)]

w̃(x; a|q)pn(x; a|q) =
(
q − 1

2

)n

q
1
4n(n−1)Dn

q w̃(x; aq
n
2 |q),

where w̃(x; a|q) := w(x; a|q)/√1− x2. The Askey-Wilson operator being defined by

Dqf(x) :=
δqf(x)

δqx
=

f̆(q
1
2 eiθ)− f̆(q−

1
2 eiθ)

1
2(q

1
2 − q

1
2 )(eiθ − e−iθ)

, (6.5)

f(cos θ) = f̆(eiθ), and the integration by parts formula for the Askey-Wilson operator (6.5) given
in [3], [18, Section 16.1].

Now we give a definite integral for the Wilson polynomials which is equivalent to (3.9). This
equivalence follows through Lemmas 3.4, 3.8. We will need the weight function for the Wilson
polynomials (3.5) and the Wilson square norm (3.12).

Theorem 6.4. Let n ∈ N0, t, u ∈ C, �(a1, a2, a3, a4) > 0, and non-real parameters occur in
conjugate pairs. Then∫ ∞

0

Γ(t+ ix)Γ(t− ix)

Γ(u+ ix)Γ(u− ix)
Wn(x

2;a)W(x; a)dx =
Hn(a)(a123)u(a1, a2, a3)t(a123 + u)2n(a1234 − 1)n

(a123)t(a1, a2, a3)u(a123 + t)n(a1234 − 1)2nn!

× (u− t)n
(a1+u, a2+u, a3+u)n

7F6

(
a123+u+2n−1, a123+u+2n+1

2 , a12+n, a13+n, a23+n, u−a4, u−t+n
a123+u+2n−1

2 , a1+u+n, a2+u+n, a3+u+n, a123+t+n, a1234+2n
; 1

)
.

Proof. Multiply both sides of the Wilson polynomial expansion (3.9) by Wm(x2; a)W(x; a),
integrate over (0,∞) using orthogonality of the Wilson polynomials. Replace in the resulting
expression m 
→ n, and the result follows. �

6.2 Definite integrals for continuous q-Jacobi and Jacobi polynomials

The orthogonality relation for continuous q-Jacobi polynomials [22, (14.10.2)], after scaling so

that qα+
1
2 
→ α and qβ+

1
2 
→ γ is∫ 1

−1
P (α,γ)
m (x|q)P (α,γ)

n (x|q)w(x;α, γ|q)√
1− x2

dx = 2πgn(α, γ; q)δmn,

where

w(x;α, γ|q) :=
∣∣∣∣∣ (e2iθ; q)∞
(α

1
2 eiθ,−γ 1

2 eiθ; q
1
2 )∞

∣∣∣∣∣
2

,

and

gn(α, γ; q) :=
αn(1− αγ)(q

1
2α, q

1
2 γ,−q(αγ) 1

2 ; q)n((αγq)
1
2 , q(αγ)

1
2 ; q)∞

(1− q2nαγ)(q, αγ,−(αγ) 1
2 ; q)n(q, q

1
2α, q

1
2 γ,−(αγ) 1

2 ,−(αγq) 1
2 ; q)∞

.

Corollary 6.5. Let n ∈ N0, x = cos θ ∈ (−1, 1), α, γ ∈ (−1
2 ,∞), dn(β, t, α, γ; q) defined as in

(4.3). Then∫ 1

−1

(tβeiθ, tβe−iθ; q)∞
(teiθ, te−iθ; q)∞

P (α,γ)
n (x|q)w(x;α, γ|q)√

1− x2
dx = 2πgn(α, γ; q)dn(β, t, α, γ; q).
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Proof. Multiply (4.3) by w(x;α, γ|q)P (α,γ)
n (x|q)/√1− x2 and integrate over (−1, 1) produces

the result. �

Corollary 6.6. Let n ∈ N0, α, β > −1, ν ∈ C, such that �(α+ 1− ν) > 0. Then∫ 1

−1
(1− x)−νP (α,β)

n (x)(1− x)α(1 + x)βdx =
2α+β+1−νΓ(α+ 1− ν)(ν)nΓ(β + 1 + n)

n!Γ(α+ β + 2− ν + n)
.

Proof. Follows from orthogonality of the Jacobi polynomials [22, (9.8.2)] and (5.16). �

6.3 Definite integrals for continuous q-ultraspherical/Rogers and Gegenbauer
polynomials

The property of orthogonality for continuous q-ultraspherical/Rogers polynomials found in
Koekoek et al. (2010) [22, (3.10.16)] is given by∫ 1

−1
Cm(x;β|q)Cn(x;β|q)w(x;β|q)√

1− x2
dx = 2π

(1− β)(β, qβ; q)∞(β2; q)n
(1− βqn)(β2, q; q)∞(q; q)n

δmn, (6.6)

where w : (−1, 1)→ [0,∞) is the weight function defined by

w(x;β|q) :=
∣∣∣∣ (e2iθ; q)∞
(βe2iθ; q)∞

∣∣∣∣2 . (6.7)

We use this orthogonality relation for proofs of the following definite integrals.

Corollary 6.7. Let n ∈ N0, x = cos θ ∈ (−1, 1), β, γ ∈ (−1, 1) \ {0}, 0 < |q| < 1, |t| < 1. Then∫ 1

−1

(tβeiθ, tβe−iθ; q)∞
(teiθ, te−iθ; q)∞

Cn(x; γ|q)w(x; γ|q)√
1− x2

dx

= 2π
(γ, γq; q)∞(β, γ2; q)n
(γ2, q; q)∞(q, qγ; q)n

2φ1

(
βγ−1, βqn

γqn+1
; q, γt2

)
tn. (6.8)

Proof. We begin with the generalized generating function (5.4), multiply both sides by

Cm(x; γ|q)w(x; γ|q)√
1− x2

,

where w(x; γ|q) is obtained from (6.7), integrating over (−1, 1) using the orthogonality relation
(6.6) produces the desired result. �

Corollary 6.8. Let n ∈ N0, λ, μ ∈ (−1
2 ,∞) \ {0}, |t| < 1. Then∫ 1

−1

Cμ
n(x)

(1− 2tx+ t2)λ
(1− x2)μ−

1
2dx =

√
π Γ(μ+ 1

2)(λ, 2μ)n

Γ(μ+ 1)(μ+ 1)nn!
2F1

(
λ− μ, λ+ n

μ+ n+ 1
; t2

)
tn.

Proof. Starting from (6.8) and taking the limit q ↑ 1−, using [22, (14.10.35)]

lim
q↑1−

Cn(x; q
λ|q) = Cμ

n(x),

the result follows. �
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Observe that since the Gegenbauer polynomials can be written as [8, (18.5.10)]

Cλ
n(x) = (2x)n

(λ)n
n!

2F1

(−n
2 ,−n+1

2

1− λ− n
;
1

x2

)
,

the above integral can be written in terms of a 2F1, and we also have a similar 2F1 on the
right-hand side.

Corollary 6.9. Let n ∈ N0, α, β > −1, ν ∈ C, such that �(α+ 1− ν) > 0. Then∫ 1

−1
(1− x)−νCμ

n(x)(1− x2)μ−
1
2dx =

2α+β+1−νΓ(α+ 1− ν)(ν)nΓ(β + 1 + n)

n!Γ(α+ β + 2− ν + n)
.

Proof. Follows from orthogonality of the Gegenbauer polynomials [22, (9.8.20)] and (5.20). �

Similar definite integrals can be obtained for the Chebyshev polynomials and the first kind
multiplied by (1− x)−ν and for the Laguerre polynomials multiplied by 1/xν , using (5.21) and
(5.22) respectively.

7 Outlook

It has been suggested by a referee that it would be interesting to investigate the transformation
properties of the derived definite integrals in this paper since the Rogers generating function
is a generalization of the generalized Stieltjes kernel (z − x)−ν . The transformation and trans-
mutation properties of the generalized Stieltjes transformations for the Gauss hypergeometric
function has been summarized recently in a paper by Koornwinder [23]. Generalized Stielt-
jes transforms have evident properties of mapping solutions of the hypergeometric differential
equation to other solutions of the same equation, while generalized Stieltjes transforms map
solutions of the hypergeometric differential equation to solutions of another differential equa-
tion. Unfortunately a similar analysis for our problem is not easily accomplished because the
singularities of the Gauss hypergeometric differential equation are 0, 1 and ∞, whereas for in-
stance, for Jacobi-type orthogonal polynomials, the singularities are at ±1 and ∞. In future
research, we would like to apply an analogous result to study the transformation properties for
definite integrals of Jacobi-type orthogonal polynomials and also for their q-analogs such as for
continuous q-ultraspherical/Rogers polynomials using the Gegenbauer and Rogers generating
functions. This study could have deep consequences.
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[12] L. Gegenbauer. Über einige bestimmte Integrale. Sitzungsberichte der Kaiserlichen
Akademie der Wissenschaften. Mathematische-Naturwissenschaftliche Classe., 70:433–443,
1874.
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38(3):605–618, 1986.

[27] M. Rahman and A. Verma. Quadratic transformation formulas for basic hypergeometric
series. Transactions of the American Mathematical Society, 335(1):277–302, 1993.

[28] E. M. Rains and S. O. Warnaar. Bounded Littlewood Identities. Memoirs of the American
Mathematical Society, to appear, 2018. http://arxiv.org/abs/1506.02755.

[29] L. J. Rogers. On the expansion of some infinite products. Proceedings of the London
Mathematical Society, 24:337–352, 1893.
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