期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:477
The expansions of spectral function and the corresponding finite dimensional integrable systems
Article
Du, Dianlou1  Wang, Xue1 
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
关键词: Integrable system;    Action-angle coordinates;    Inversion;    Soliton solutions;   
DOI  :  10.1016/j.jmaa.2019.04.065
来源: Elsevier
PDF
【 摘 要 】

In this paper, taking the Lax pairs of KdV equation as an illustrative example, with the help of a transformation of the spectral problem, another form of spectral function is used to give finite dimensional integrable systems. These integrable systems are generated by two different kinds of polynomial expansion of spectral function on spectral parameter. Further, the root variables of the spectral function are introduced to study the canonical equations of Hamilton. Finally, based on the Hamilton-Jacobi theory, the action-angle variables are built and the soliton solutions of KdV equation are obtained by inversion. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2019_04_065.pdf 415KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次