期刊论文详细信息
| JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:445 |
| Upper bound for intermediate singular values of random matrices | |
| Article | |
| 关键词: Random matrix; Upper bound of singular value; Non-asymptotic distribution; Subgaussian; | |
| DOI : 10.1016/j.jmaa.2016.08.007 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
In this paper, we prove that an n x n matrix A with independent centered subgaussian entries satisfies S-n+1-l(A) <= C-1(t) l/root n with probability at least 1-exp(-C(2)tl). This yields s(n+1-l)(A) similar to cl/root n in combination with a known lower bound. These results can be generalized to the rectangular matrix case. (C) 2016 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jmaa_2016_08_007.pdf | 413KB |
PDF