期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:446
On critical systems involving fractional Laplacian
Article
Guo, Zhenyu1,2  Luo, Senping2  Zou, Wenming2 
[1] Liaoning Shihua Univ, Sch Sci, Fushun 113001, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词: Ground state;    Nehari manifold;    Fractional-Sobolev critical exponent;   
DOI  :  10.1016/j.jmaa.2016.08.069
来源: Elsevier
PDF
【 摘 要 】

Consider the following non-local critical system {(-Delta)(s)u - lambda(1)u = mu(1)vertical bar u vertical bar(2)*(-2)u + alpha gamma/2* vertical bar u vertical bar(alpha-2)u vertical bar v vertical bar(beta) in Omega, (-Delta)(s)v - lambda(2)v = mu(2)vertical bar v vertical bar(2)*(-2)v + beta gamma/2* vertical bar u vertical bar(alpha)vertical bar v vertical bar(beta-2)v in Omega, u = 0, v = 0 in R-N\Omega, where (-Delta)(s) is fractional Laplacian, 0 < s < 1 and all lambda(1), lambda(2), mu(1), mu(2), gamma > 0, 2(*) := 2N/N - 2s is a fractional Sobolev critical exponent, N > 2s, alpha, beta > 1, alpha + beta = 2(*), and Omega is an open bounded domain in R-N with Lipschitz boundary. Under proper conditions, we establish the existence result of the ground state solution to system (0.1). (C) 2016 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2016_08_069.pdf 1116KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:0次