| JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:446 |
| On critical systems involving fractional Laplacian | |
| Article | |
| Guo, Zhenyu1,2  Luo, Senping2  Zou, Wenming2  | |
| [1] Liaoning Shihua Univ, Sch Sci, Fushun 113001, Peoples R China | |
| [2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China | |
| 关键词: Ground state; Nehari manifold; Fractional-Sobolev critical exponent; | |
| DOI : 10.1016/j.jmaa.2016.08.069 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
Consider the following non-local critical system {(-Delta)(s)u - lambda(1)u = mu(1)vertical bar u vertical bar(2)*(-2)u + alpha gamma/2* vertical bar u vertical bar(alpha-2)u vertical bar v vertical bar(beta) in Omega, (-Delta)(s)v - lambda(2)v = mu(2)vertical bar v vertical bar(2)*(-2)v + beta gamma/2* vertical bar u vertical bar(alpha)vertical bar v vertical bar(beta-2)v in Omega, u = 0, v = 0 in R-N\Omega, where (-Delta)(s) is fractional Laplacian, 0 < s < 1 and all lambda(1), lambda(2), mu(1), mu(2), gamma > 0, 2(*) := 2N/N - 2s is a fractional Sobolev critical exponent, N > 2s, alpha, beta > 1, alpha + beta = 2(*), and Omega is an open bounded domain in R-N with Lipschitz boundary. Under proper conditions, we establish the existence result of the ground state solution to system (0.1). (C) 2016 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jmaa_2016_08_069.pdf | 1116KB |
PDF