期刊论文详细信息
Advances in Nonlinear Analysis
On a class of critical elliptic systems in ℝ 4
article
Xin Zhao1  Wenming Zou1 
[1] Department of Mathematical Sciences, Tsinghua University
关键词: Schrödinger system;    Nehari manifold;    Ground state;   
DOI  :  10.1515/anona-2020-0136
学科分类:社会科学、人文和艺术(综合)
来源: De Gruyter
PDF
【 摘 要 】

In the present paper, we consider the following classes of elliptic systems with Sobolev critical growth: − Δ u+λ 1u=μ 1u3+β uv2+2qpyu2qp− 1v2inΩ ,− Δ v+λ 2v=μ 2v3+β u2v+2yu2qpvinΩ ,u,v> -->0inΩ ,u,v=0on∂ Ω , $$\begin{array}{} \displaystyle \begin{cases} -{\it\Delta} u+\lambda_1u=\mu_1 u^3+\beta uv^2+\frac{2q}{p} y u^{\frac{2q}{p}-1}v^2\quad &\hbox{in}\;{\it\Omega}, \\ -{\it\Delta} v+\lambda_2v=\mu_2 v^3+\beta u^2v+2 y u^{\frac{2q}{p}}v\quad&\hbox{in}\;{\it\Omega}, \\ u,v \gt 0&\hbox{in}\;{\it\Omega}, \\ u,v=0&\hbox{on}\;\partial{\it\Omega}, \end{cases} \end{array}$$ where Ω ⊂ ℝ 4 is a smooth bounded domain with smooth boundary ∂Ω ; p , q are positive coprime integers with 1 0 and λ i ∈ ℝ are fixed constants, i = 1, 2; β > 0, y > 0 are two parameters. We prove a nonexistence result and the existence of the ground state solution to the above system under proper assumptions on the parameters. It seems that this system has not been explored directly before.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202107200000497ZK.pdf 471KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:2次