期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:458
Variance reduction for discretised diffusions via regression
Article
Belomestny, Denis1,2  Haefner, Stefan3  Nagapetyan, Tigran4  Urusov, Mikhail1 
[1] Univ Duisburg Essen, Essen, Germany
[2] RAS, IITP, Moscow, Russia
[3] PricewaterhouseCoopers GmbH, Frankfurt, Germany
[4] Univ Oxford, Oxford, England
关键词: Control variates;    Monte Carlo methods;    Regression methods;    Stochastic differential equations;    Weak schemes;   
DOI  :  10.1016/j.jmaa.2017.09.002
来源: Elsevier
PDF
【 摘 要 】

In this paper we present a novel approach towards variance reduction for discretised diffusion processes. The proposed approach involves specially constructed control variates and allows for a significant reduction in the variance for the terminal functionals. In this way the complexity order of the standard Monte Carlo algorithm (epsilon(-3) in the case of a first order scheme and epsilon(-2.5) in the case of a second order scheme) can be reduced down to epsilon(-2+delta) for any delta is an element of [0, 0.25) with epsilon being the precision to be achieved. These theoretical results are illustrated by several numerical examples. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2017_09_002.pdf 679KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:1次