期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:480
Quantum algebra from generalized q-Hermite polynomials
Article
Mezlini, Kamel1  Azaiez, Najib Ouled2,3 
[1] Univ Tunis El Manar, Fac Sci Tunis, Dept Math, Tunis El Manar 2092, Tunisia
[2] Univ Sfax, Fac Sci Sfax, Dept Math, BP 1171, Sfax 3000, Tunisia
[3] King Faisal Univ, Coll Sci, Dept Math, POB 400, Al Hasa 31982, Saudi Arabia
关键词: q-orthogonal polynomials;    q-deformed algebras;    Harmonic oscillators;   
DOI  :  10.1016/j.jmaa.2019.07.047
来源: Elsevier
PDF
【 摘 要 】

In this paper, we discuss new results related to the generalized discrete q-Hermite II polynomials (h) over tilde (n,alpha)(x; q), introduced by Mezlini et al. in 2014. Our aim is to give a continuous orthogonality relation, a q-integral representation and an evaluation at unity of the Poisson kernel, for these polynomials. Furthermore, we introduce q-Schrodinger operators and we give the raising and lowering operator algebra corresponding to these polynomials. Our results generate a new explicit realization of the quantum algebra su(q)(1, 1), using the generators associated with a q-deformed generalized para-Bose oscillator. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2019_07_047.pdf 426KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次