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1. Introduction

The g-deformed harmonic oscillator algebras have been intensively studied in recent years due to their
crucial role in diverse areas of mathematics and physics (see [9,10,15,16]). One of the most important
applications of g-deformed algebras based theory arises from a generalization of the fundamental symmetry
concept of the classical Lie algebras.

Many algebraic constructions were proposed in the literature to describe assorted generalizations of the
quantum harmonic oscillator. However, a common difficulty for most of them is to derive an explicit form
of associated Hamiltonian eigenfunctions. It is well known that Hermite polynomials are connected to the
realization of classical-harmonic-oscillator algebras. It is worth to mention that generalizations of quantum
harmonic oscillators lead to generalizations of g-Hermite polynomials. An explicit realization of g-harmonic
oscillator has been explored by many authors (see for instance [4,5,7,15]), where the eigenfunctions of the
corresponding Hamiltonian are given explicitly in terms of g-deformed Hermite polynomials. Generators of
the corresponding oscillator algebra are realized in terms of first-order difference operators.
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This paper investigates the generalized discrete g-Hermite 1T polynomials ﬁn)a(ac; q) to construct a new
realization of quantum algebra. From this generalization, we obtain an explicit form of the generators for
quantum algebra, in terms of ¢-difference operators.

The structure of this paper is as follows: Sec. 2 describes briefly the main definitions and properties of
some g-basic special functions and operators [2,11]; Sec. 3 recalls some notations and useful results about the
generalized discrete g-Hermite IT polynomials [12]. Therefore, we obtain continuous orthogonality relations.
Moreover, an integral representation of generalized discrete g-Hermite II-polynomials is proposed, and an
evaluation at unity of the Poisson kernel for a family of polynomials Bn,a(x; q), is also studied. In addition
to this, for @ = 1/2, a formula using g-trigonometric functions Cos,(x), Sing(z), and an expression for the
second g¢-Bessel functions in terms of the generalized discrete g-Hermite II-polynomials, is given. Among
other things, by the specialization z = i¢®t!/? in the generating function of the even generalized ¢-Hermite
polynomials, a special case of the Heine transformation of 2¢; series [11, Appendix III, page 359, (I111.3)],
is recovered. Sec. 4 provides an explicit new realization of quantum algebra, in which the generators are
associated with g-deformed generalized para-Bose oscillator.

2. Notations and preliminaries

This section is systematically organized in the following order; Sec. 2.1 introduces some basic notations;
Sec. 2.2 recalls the definitions of g-derivatives and g-integrals; Sec. 2.3 recalls the definition of some g-special
functions that are important in our paper.
2.1. Basic symbols

For the convenience of the reader, we provide in this section a summary of the mathematical notations

and definitions, see [11,12]. Throughout this paper, we assume that 0 < ¢ < 1 and a > —1. For each complex
number a, we define ¢-shifted factorials, being

n—1 oo
@@o="1 (a;9)n=J[0—ag")n=1,2,5 (a;9)00 = [J(1 = ag®).
k=0 k=0

The g-number and the g-factorial are defined as follows:

x

1 _
[, = < _qq . zeC and nly=[]e[2lg[nle; Oy=1, neN.

For each real a > —1, the generalized ¢-integers and the generalized g-factorials are defined as:

[2n],0 = [20],,
[2n+1],, = [2n+2a+2],, (2.1)
nlga =[1],02],0 [l 0 0ga=1,

and the generalized ¢-shifted factorials are defined as:
(Q; Q)n,a = (1 - q)nn!q,a~ (22)
We can write (2.2) explicitly as:

(@ D2na = (%) (@2 ¢%)n,

2. 2 2a0+2. 2 (2:3)
(@ Dont1,0 = (@5 6%)n(*T2 %) na.
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Remark 2.1. The specific value o = —% leads to (¢;¢)n,e = (¢;¢)n and nly o =nl,.
2.2. q-derivatives and q-integral
Jackson’s g-derivative D, (see [11,13]) is defined by:
D,f(2) = AT, (2.4)
The variant D;, called forward g-derivative of the (backward) g-derivative D, = D, (2.4), is defined as:

fla2) — f(z)

DF = 2.5
£ = LA (25)
Note that lim,_,;- Dy f(2) = lim,_,1- D} f(2) = f'(z) whenever f is differentiable at z.
Generalized backward and forward g-derivative operators D, o and D], are defined as (see [12])
f(2) = f(q2)
D = 2.
af(2) = T, (26)
fla™t2) — > f(2)
Df = . 2.
q,af(z) (1 — q)z ( 7)
Generalized g-derivatives operators are given by
Aq7af = que + Dq7afov (28)
Ar . f = Df fe+ Df , fo, (2.9)

where f. and f, are respectively the even and the odd parts of f.

—_1 — + _ p+ _ + _ pt
For a = —3, we have Dy o = Dy, Dj, = Dy, Ay o = Dy and Ay, = Dy .

We shall need the Jackson g-integral defined by (see [11,13])

[t@do=-a 3 s
0

n=—oo

/ [ =(1-9) 3 @f+0-0) S @ f—a").

n=—oo n=—oo

One can easily show that these integrals converge for a bounded function f, since the geometric series
converges for 0 < ¢ < 1.

2.3. Some q-analogues of special functions

The two Euler’s g-analogues of the exponential function are given by (see [11])

k(k—1
[eS) (2 )Zk

_y et .
Eq(Z) - P (q’ q)k ( 1Q)007 (2 10)
S 1
2= 2 @r  (d)e’ 2l < 1. (2.11)

k=0
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Then g-analogues of the trigonometric functions are defined as

B, (i2) + By(~iz)

E,(iz) — E4(—iz)
5 , .

24

Cosq(z) = Sing(z) = (2.12)

The generalized g-exponential function is defined as (see [12])
oo k(kz 1) k

Z d (2.13)
k=0

Using Remark 2.1, the specific value o = —1 leads to Ey o (2) = E4(2).
The following ¢-Bessel functions can be expressed using generalized g¢-shifted factorials. The Jackson
second ¢-Bessel function is defined as (see [11,14])

(q2a+2 n 2n(n+a)

WJQW (g)ago% (3)2” (2.14)

The Hahn-Exton ¢-Bessel function is defined as (see [14, page 20, Formula (0.7.15)])

YSICTOE

200+2. St ( 1)n n(n+1)

100 o —1)"q n
T g ", 2.15
(qQa q )OO n=0 (Qa q)2n,a ( )

(q

I (x54%) =

The modified g-Bessel function is defined as

2. .2 o0 n n (n+1)
- q 7q o —« n
Julas ) = e P ) = 3 S (2.16)

n—0 2n ,Q

3. The generalized discrete g-Hermite II polynomials

The generalized discrete g-Hermite II polynomials {h,, o (x;¢)}22, are introduced by the first author et
al. [12]. We recall their definition and some of their main properties. They are defined as

[

3

] (_l)kq72nqu(2k+1)mn72k

hn,a(®39) == (¢; n 3.1)
( (00 = (PG Dn—2k.0 (
where [x] denotes the integral part of z € R.
For a = —3, hp,a(; q) reduces to the discrete g-Hermite II polynomial hy,(z;q) (see [14]).
They have the following properties (see [12]):
The generating function:
[e'e) n(n, 1)
e (—2)E Z (x;9)2" (3.2)
The inversion formula:
A TN )
<QQ Q)n,a : . (33)

= ()G Dn—2k
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Forward shift operator:

ﬁn,oz(q_lx; q) - q(2a+1)9n+1ﬁn,a(m; Q) = q—n(1 - qn).’L‘iLn,La(J}; (1)7 (34>

where 6,, is defined to be 0 if n is odd and 1 if n is even.

Backward shift operator:

h 2a-+1)0 2a—1_2\7, 1 — g n—1-Ea+1)bn
B (w3 q) — ¢TI (14 g7 2?) by 0 (g g) = —¢" 1_g 1 Thnt1,a(;q). (3.5)
Three terms recursion formula:
- Lo . 1 — gnt1+(2at1)on
Thyo(z:9) — ¢ 72 (1 — ¢ hn_1,0(z59) = o P10 q). (3.6)

g-Difference equations:
(L+q7 2 P honalgr; ) — (L4472 + ¢ 272 hopa(39) + 4 > hanalg 259) =0 (3.7)
and
(1+ ¢ 2" hont1,a(qz59) — (0 + 027 + ¢ 720 honi1,a(239) + 4 hant1,a(q " 259) = 0. (3.8)

The family of generalized discrete g-Hermite II polynomials satisfy two kind of orthogonality relations,
a discrete one and a continuous one. As was shown in [12], we have:

A discontinuous orthogonality relation:

o0

- - 201 - q)(~¢,~4, 6% )t (;0)>
. . . 20+1 _ ) ) 3 yqd)p
/ hn,a(xaQ)hm,a(x7Q)wa(x7Q)‘x| dgx = (—q 201, — 203 _g2at2; g2) (Q5Q)n,a On,ms (3.9)
where
wa(w;9) = eg2(—q 72" 1a?) (3.10)

and 0y, », is the Kronecker symbol.
3.1. A continuous orthogonality relation

Our primary interest in this paper is to prove a continuous orthogonality relation for the family of
generalized discrete g-Hermite II polynomials. First, we rewrite the g-Laguerre polynomials (see [14]) by
means of the generalized g-shifted factorials as follows:

n (_1)kq2k(k+a)xk

=0 (4 @)2k,0 (6% 6% )n—k

The discrete g-Hermite IT polynomials fzma(x; q) can also be expressed in terms of g-Laguerre polynomials
LS ;) as follows (see [12]):
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E2n,a($;q) _ (_1)nq7’ﬂ(2n71) (q.2(;17q2)2n L(G)( —2a-1y2. 02 ),
. (3.11)
h2n+1,a(x; q) — (71)nq7n(2n+1) ((Iz(‘jiﬁrtlz).izqr%;“xl—/%a-&-l)(quaflmQ; q2)
The ¢-Laguerre polynomials satisfy the following orthogonality relations (see [14]):
i (0216} (> ¢ -
L (z;4%) L(o‘)xq z%ep(—2)dr =T'(—a)['(a+1 "6, 3.12)
0/ (@:4%)0 s (~a)de = T ar 4+ 1) et (

Note that the orthogonality measure in (3.12) is not unique.

Theorem 3.1. The g-polynomials {hn o(T39)}22 ) satisfy the following continuous orthogonality relations:

/ Bnﬁa(x; q)ﬁm,a(az; q)|x|20‘+1wa(x; q)dx = d,‘faén,m, (3.13)

where
wa(T;q) = eg2(—q 2 ta?) (3.14)

and
1
.2 (q:q ga —(a+1)(2a+1) 2; 2 oo
dn [e% - O&qTiv Ca = q (q_Qq )2 (315)
(9), (=)l (e +1)(g72%¢%) o

Proof. Since the weight function in the integral (3.13) is an even function of the independent variable x
and the parity of the g-polynomials {ilma(l‘; Q)15 is the parity of their degrees, it suffices to prove only
those cases in (3.13), when degrees of polynomials m and n are either simultaneously even or odd.

First, we consider the even case: it follows from (3.11) that

/ E2n,a<x; q)BQm,a (ma Q)|$|2a+1wa (ZC, Q)dx

N (3.16)
= A3 [ L L (47 P e
0

where

A _2(_1)n+m —n(2n—1)—m(2m—1) (¢ 0)2n (45 @)2m
= q (@2, ) (22 %)

The change of variable t = ¢=2*~122 in the last integral in (3.16) leads to

Agm T @ «@ o
e Ea [ 6L 6 e (e,
0

By relation (3.12), it follows that
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oo

/ P (@5 @)oo (@ @) Hwa (2; q)de

— 00

Ao —2a. 2 20+2. 2
_ F(—a)l—‘(a—i— 1)q(a+1)(2a+1) n,m (q 34 )oo(q 4 )nq_%én,m

2 (4% 6%) o0 (4% @®)n
(072 ¢*)o0(¢:9)3 _(2n)?
— I(—a)T(a + 1)gle Do) n g
(=T ) (4%4®) o0 (@272, ¢%)n (0% ®)n

then, using (2.3) we obtain the result in the case n even. The odd case is obtained similarly. We have

/ R, @)yt o (2 0) 22 (5 )
— 00

(3.17)

/L a+1) _20‘_1x2;q2)L§fj+1)( —2a—12. 02y, (g q)2 22+ d,
0

where

BO = 9(—1)ntmgn(ntl)—m(zm) (@ D2n+1(@ D2mer
(47242 n+1(a** % ¢%)m+1

The change of variable t = ¢72%~ 122 in the last integral in (3.17) leads to

q(a+2)(2a+1 /L(a+1) L(a-{—l)( ) eq? (—t)ta+1dt.
0
By relation (3.12), it follows that

o0

/B2n+1,a(x;Q)52m+1,a($;Q)|$|2a+1wa($§Q)d$

— 00

B~ (q—2a—2. q2) (q2a+4. q2)
=I'(—a—1)IT'(ax+2 q(a+2)(2a+1) n,m ) > ’ ’ﬂq—2n5n "
( A ) 2 (4% 4%) (4% 4%)n ’
— [(—a — D) (a + 2)ge+D@atD) (7270 0o (T ¢%)n (05, 0)5,0 44 —in(tn),
(@%:4%) 00 (0®*12:¢%)2 1 (6% ¢®)n

Using the fact that

IN—a-— 1)F(a +2)=-T(—a)'(a+1),

@200 = =021 = )01 ¢")
and (2.3), we get
/EQn-}-l,a(x;Q)iQm-&-l,a(J:;Q)|x|2a+1wa(gj;Q)d$

.2 . 2
=T'(—a)[(a+ 1)q (oo (12050 )oo (@i Dans1 —2nt)?
(4256%) 00 (¢ D 2n 11,0

n,m»

us desired. O
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8.2. The q-integral representation

We start this section by describing the action of some of g-derivatives operators on powers of  and on
some g-analogues of Bessel functions.

Proposition 3.1. The following statements hold:

AF g = (G Dna ks g 3.18
B (1= )™@ Dn-ra - (3.18)
—?\2x
Dyja(Az;¢%) = A=gi= q20+2)]a+1(q)\m 1 q°). (3.19)
—1) n(n+1))\2n
AT (i g?) = Jala" a3 6?). (3.20)

(1 _ q)ZTL
(_1)n+1q(n+1)(n+2)>\2n+2

A2n+1]a()\x ) = (1= q)2nt1(1 — 2o+2) Tjas1(q" T Az %), (3.21)
Proof. From definitions (2.3), (2.4) and by induction, we get (3.18).
Using the fact that
(¢ D2na = (1= ¢*") (G @)2n-1,0 and (¢;Q)2n-1,0 = (1 = ¢** ") (¢; D2n-2,a+1,

we deduce (3.19).

By (2.16) and the result in (3.18) we obtain (3. 20)

By definition (2.8), we have A2%j, (x5 ¢?) = Dy [A2" jo| (#;¢%). Together with (3.19) and (3.20) we
get (3.21). O

We have (see [12, p. 24, Lemma 5.1])

/ 2n+2a+1d y — Cq oq —n?—2a (q2a+2; q2)n7 (322)
0

where

Coo = _ 3.23
B (=4 =4, % ¢*) oo (3.23)
An important formula used later is
Lemma 3.1.
/€q2 Djalzy; q )y20‘+1dqy = cq,aeqa(—q_%‘_lﬁ). (3.24)
0

Proof. Expand j,(7y;¢?) as power series and integrate term by term and use (3.22) to conclude (3.24). O

Now we provide a g-integral representation of generalized discrete g-Hermite IT polynomials.
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Theorem 3.2. Forn =0,1,2,..., we have

(—1)q " ) (g ),

han,o(x;q) =
ma( ) Cq,a(q,Q)Qnaeq ( q- 20— 1x2)
o0
x / eq(—qy*)ja(q" wy; ¢*)y*" 2 dyy.
0
N ( 1)n+1 —n +(n+1)(2a+3 (q )2n+1x

 cqa(1 = @22) (5 Q)2ns1,06q02 (—q 20 122)

oo
x / eq(=qy?)jor1 (" ay; )y 2O d gy
0

Proof. We recall the Rodrigues-type formula (see [12])

—n(n—1)
2

_ n —-1. -1
(q—1)"q (¢ hq )HAZ,

——— eq2(—q
(q 1561 1)n,a K

eqz(*q72a71x2)hn,a($;Q) =
From (3.24), we obtain
o0
/eqa(—qu)AZ,aja(xy; )P dgy = cq.aAl geq2(—q 2 a?).
0

From (3.20) and (3.27), we get

oo

( n n(n+1) 2o
1_q2n /eq2 y*)ja(d"2y; ¢)y* T2 gy
0
qn(2n71)(q7

—1
14" )2na —2a-1,2
= cq, —— e2(—q h 5 q

T (g =12 (g g ) o Yhanal®:)-

Using the fact that ‘Z “ana _ gon(2041) (@0na e ohtain

(¢—1 ’ 7 Dan (6:@)2n

o0
(=" / eq2(—qy?)ja(q"zy; @) y* T dyy
0

qn(n—Qa—S)(

4 9)2n,a —20-1,2
= Cq,a €q2(—¢q h2n alT5q
! (¢ 9)2n o Jhana(w;a)-
Hence,
B n, —n(n—2a—3)(,. n
h2n,a(x;q) _ ( ) q (qaq)Q

-1
Cq,a(q' q)2n a€q? (_q_2a_1.'172)
oo

X / e (—ay?)jalq zy; @) y* T dyy

Further,

720(71%2).

(3.25)

(3.26)

(3.27)
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o0
/ eq2(—qy®) AT jo (wy; )y T dgy = cqa D eg2 (—q 2 a?).
0

From (3.21) and (3.27) we get

oo

(*Unﬂq(nﬂ)(nﬂ)fﬂ / 2 - n+1 2y, 2n+2a+3
eqz(—=qy”)ja+1(¢"" Y5 47y dgy
1 — g)2nt+1(1 — g2a+2 q
(1—¢q)*"*t1(1—g¢ )0
n(2n+1)(,—1. ,—1
q ((] 34 )2 +1, —2a—1 2)h2n+1a(z q)

= C a — — 2(—¢q
(g =12t (g g ongr

Using the fact that Z entie = ¢~ (D Q@a+1) Gt o obtain

(q g Yant1 (¢:9)2n+1

(71)n+1q(n+1)(n+2)aC ) . e
0 P (1 sy eq2(—qy*)jas1(¢" T ay; )y dyy
0

n(2n+1)—(n+1)(2a+1) (.
q q549)2n+1,« 20—
(¢ Q2n+ eq2(—q 20-1,2]

=c h T q
e (¢ — 1)2"*1(q; @)2ns1 21,03 4).

Thus,

(_1)n+1q—n2+(n+1)(2a+3)(q )2n+1x

cg.a(l = **F2)(¢ Qant1,aeq2 (—g 727 12?)

hant1,0(7;q) =
o0
X / eq2(—qy*)jor1(q" ay; )y P dyy.
0

This completes the proof. 0O
3.8. Evaluation at unity of the Poisson kernel for izna(x, q)

Theorem 3.3. The following equation is an evaluation at unity of the Poisson kernel for the generalized
discrete q-Hermite II polynomials:

g q q) L L
Z B o (0712 25.9) P, (07T 2 3 )
n=0

7 )

B (qQ;qQ)oo(xy)* @)
(2% )z — y) 72

(3.28)

[e3

(22 ¢%)J 2 (2y: ¢%) — JP (2543 T (255 42) | -

Proof. From the Christoffel-Darboux formula and the limit transition of ¢-Laguerre polynomials to Jack-
son’s g-Bessel functions (see [18] and [8]), we deduce that

oo

Z MH L(a)( %ALY (v 4%)

n:O

22 (22 ¢%) T2 (205 42) — yI P (22542 I ) (243 )}

(0% ¢%) oo (zy)~* [

- (q2a+2; 42)oo($2 _ y2)

In the last sum, the L™ (22;¢2) can be written in terms of hig, (¢ 2z;q). Using (3.11), it follows that
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an?

o0
" (43 9)2n0 PR L
> 7(. 2)2" oo (@225 Q) hon.a (¢ 2y; q)
—=  (64)3,

o0

Z 2a+2 Jn L’Ela)(x2; )L (% ¢%) (3.29)

-«

__ (g%q )oo(éﬂy)
(q2a+2; q2)oo('r2 _ y2)

213 2 ?) T (2y3 %) — yI P (22567 T (203 6°) |-
Likewise (again using (3.11)), we have

= 1 - q54)2n+1 1
hont1,a(q*F22;9) = (—1)"q n(2n+1)((12(04+2?ﬁqa+2x1’%@+1)(m2;q2)7

then we get

oo

2n+1)2 (.
q q:49)2 l,a 7 1 g 1
_( § Jan S hont1,0(@° 225 9)hont1,6 (¢ 2 Y5 q)
= A
oo q2n+2a+2( 2’ ) (at1)/.2. 2 (at1)/. 2. 2
= @ )s Sy LT (2% ) LY (y%5 ¢%)
n=0 ?
¢ S n(+1)22(+1)22
(e . « .
(1 _q2a+2) Z 2a+2 Ln (=% ¢7) Ly (75 q7)
n:O

2a+2(q qz)w(xy) (2) (2) (2)
= 2 2 2 2 .
(q2a+27q ) (:L,Q ) [xJa+2( ziq )Ja+1( Y q ) ‘] +1( x5 q )Ja+2( Y, q )

Using the fact (see [11, p.25])

q2a+2$Ja+2(2(E; q2) _ (1 q2a+2)J

[e3

2 2riq?) — 21 (21;6%),
we obtain
© (2n41)2 (.
q 4 9)2n+1,0 7 3 g)h ot

( : )2 +1 h2n+1,a(q Jr21‘;q)hzn-|-1,a(q +2y§‘])

fors (Q7Q)2n+1

2a+2(,2. 2 @
(4% ¢*) oo (zy) ¥ ;

B (4272 ¢2) oo (22 — ?) { Ja+2(2$5q2)Jo(¢J21(2y;q2) —yJ,iﬁl(fo%q )J(+2(2y, )}

(4% 4*)oo (zy) a
= Pt =y (- I e ) — ed P ) I8 2y a?)

—J2) (22, ¢%) ((1 )8 2y %) — yI P (2u; q2))}

(3.30)

= (qQQZQ’qQQ);O(f;Q__ay %) { Ja+1(2$;q2)Jé2)(2y;q ) — 2 (225 ¢ )J( ) (2y:q )}

Add the result in (3.29) to (3.30) to obtain the desired summation. 0O

Corollary 3.1. The following equation is an evaluation at unity of the Poisson kernel for the discrete
q-Hermite II polynomials:
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2
= B Sing (1)Cos, ) — Cosy ) Sing )

1 we have h (:c;q) = hy(;q) and

Proof. For the particular case o = —3,

) .2
Ji? (2z;¢%) = —(q(q(’]q)) \/_Cosq(x) and J? (22;¢%) = 7((12(?;13)2:0\/552%(3:)

It is easy now to finish the proof of the Corollary. O

Now, we express the second ¢-Bessel functions in terms of the generalized discrete g-Hermite II-
polynomials:

Proposition 3.2.

n(2n+1) (q2a+2.

i(_l)nq ( aqz)n~

@ hona(¢* 2 2;q) = 2721 T (223 ¢). (3.31)
n=0 q;9)2n

Proof. Taking limit as y — 0 in (3.28) and using the two limits

2a0+2.

(¢

(q

q2)
lim y~*J? (2y; ¢%) = -
y—0 )

oo

e 7(2) 2y 51
, 312(1)1/ Joi1y;¢7) =0, a> 5 (3.32)
identity (3.31) follows. O
Notice that by taking z = 0 in (3.31) and by appealing to the first limit in (3.32) and the fact that

Foma(05q) = (=1)"¢ "2 *"(g;¢*), and (¢ @)an = (6% ¢)n(q; ¢,

the following special case ([2, Theorem 10.2.1] with ¢ — ¢?, = ¢* and a = ¢***2) of the g-binomial
theorem can be recovered:

2a+2 2c0+4.
Zq ) :(q : ,Q) . (333)
= (4% ¢%)
The generalized discrete g-Hermite I polynomials can be written in terms of basic hypergeometric functions
as:
BQn,a ($, (I) = (_1)nq—n(2n—1) (q q2)n1¢1 (q_an q2(x+2’ q, q2"+1352) )
3.34
]”lan a(ﬂl; q) _ (_1)nq—n(2n+1)x(q,q )n++21 L1 (q—Qn; q2a+4; q2, _q2n+3x2) ) ( )
Theorem 3.4.
> _1\n,2n(n+a),2n > _1\n,2n
> (=1"q z (=1)"z
eg2(—z = , 2| < 1. (3.35)
(=2 (% )n (@2 ¢%)n ,;) (0% ¢*)n(g**+%¢%)n i

n=0
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Proof. From (3.34), we have

hon,a (g% q) = (=1)"q "D (g5 ¢*)n1o1 (7275 %25 g%, # 20 F2)

By the summation formula of ;¢ series (see [11, Appendix II, (IL.5)]):

. ~ (¢/a;9)
1¢1 (CL, C Q7c/a) - (C, q)oo B
we get
2n+2a+2.
. ) _ q 14 ) oo
hona(iq®t?q) = (=1)"¢ """ D (g; ¢ (—,
G )= () (42°%2 %) o0
which can be written as
)
hgn,a(iqa+1/2; q) = (_]_)"q_n(zn_l)M. (336)

(®+2;:¢2),

In particular, setting 2 = i¢g®*t'/? in the even part of the generating function (3.2) and using (3.36), it
follows that

x 2n—1) n(2a+1 n
2 (-1)"q ™ q 2n
es2(—2 = z7 .
g ( );:O: (2 2)n (27 2; ¢ § : 2a+2 )

This identity holds for z in the open unit disk. O

Remark 3.1. Note that formula (3.35) can be deduced from the Heine transformation of 5¢; series [11,
Appendix III, page 359, (I11.3)]:

(abz/c; q) oo ,

2¢1(a7b; C;sz) = (Zq)

o1(c/a,c/b;c;q,abz/c). (3.37)

2a+2

If one replaces ¢ by ¢2, ¢ by ¢ , z by —2%2¢?**2/ab, respectively in (3.37), and then send a — oo and

b — o0, one obtains the transformation (3.35).

Notice that, setting = i¢®T/2 in the odd part of the generating function (3.2), and using the same
method us above, one can derive an equivalent formula to (3.35) in which « is replaced by « + 1.

In the next corollary, we recover the two well-known Ramanujan’s identities [3, Chapter I, pp. 33-34,
identities (1.7.14) and (1.7.17)]:

Corollary 3.2.

= % 0%) oo (— 0% 6®) 0o (6% ¢%) o
nz::O (@ Q)20 (4 9)oo ’ (3.38)
— " (00500 0%)
Z Qon+1 (¢ 9) o0 ' (3.39)

n:O
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Proof. Setting a = —3% and z = ig!/? in (3.35), and using the identity (39) in Slater’s list [19]:

—0%6%) o0 (=% ¢®) 00 (0% ¢%)

>~Q

and the fact that (¢;¢)eo = (¢;¢?)00(¢%; ¢%) o, it follows formula (3.38).
Multiplying both sides of (3.35) by
then using the identity (38) in Slater’s

% and setting a = % and z = ig'/? in the resulting equation, and
list [19]:

MY (C06)) (-7 6% (6% 6

¢ (¢ q)2n+1 (4% 4%) o

n=

it follows the summation formula (3.39). O

Remark 3.2. The equivalence of identities (38) and (39) in Slater’s list [19] with the two corresponding
identities (3.39) and (3.38) due to Ramanujan is certainly known, as this corresponds to a special case of
the Heine transformation formula (3.37).

Proposition 3.3. For |gz| < 1, we have

00 (71)nq2n(n+a) 00 (_1)nq2n (1 + q2a _ q2n+2a)

2.2 2n 2n
eq2(—q°z 2" = z". (3.40)
o ),;) (4% ¢®)n(4**2¢%)n nz:% (4% ¢*)n(@®*F% ¢%)n

Proof. Multiply both sides of (3.35) by 1 + 22, it follows that

L

n= O

n 2n(n+a) > n

A3
2a+2’ q )n 2a+2 iq )n

S =" N (=" 2

=1+ z“"— z°"

2 (@) (@®*F%¢%)n ; (% ¢*)n-1(a°*"% ¢*)n—1

00 ( 1)n [1 _ (1 _ q2n)(1 _ q2n+2a)] ZQn
— (4% %)n(a** 2 ¢%)n

2n+2(1)

n
:i<_1)n 2"( +q2(1_q 2n

z )
—= (%) %)
which completes the proof. O

Corollary 3.3.

1 _iQZn(ldI»aniq

(0% 6%) o (272?00 < (% @) (P ¢)n

2n+2a)

(3.41)

Proof. Setting z =4 in (3.40), we obtain

& 2n(n—1) n(2a+2) o 2n 2 2n+2a
qu(qg)Z g 2 Z 2.2y ! 2(1;_(] 2 +q2 2 )
()PP = (50

Applying the following Cauchy’s formula (see [2], p. 522)
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>

= (g

)n(T3Q)n B (; q)oo7

qn(nfl)xn 1
q

it follows the identity (3.41). O
4. Realization of the quantum algebra su_3 (1,1)

The quantum algebra sug(1,1) is defined as the associative unital algebra generated by the operators
{K_, K, Ko} which satisfy the conjugation relations (see [15])

(Ko)" = Ko, (Ky)"=K_,
and the commutation relations

(Ko, Ki] = £Ky, [K_,Ki]=[2Ko],,

q;:[f__ Cisa symmetric definition of g-numbers, invariant by ¢ < ¢~ 1.
The Casimir operator C, which by definition commutes with the generators K and K| is

where [z], =

1 2
C: |:KO_§:| —K+K7.

q2

Now, we discuss an explicit one-dimensional realization of the quantum algebra su 1 (1,1). We give a con-

crete functional realization of the Hilbert space $) (defined just below) and an explicit expression of the
representation operators K_, K and Ky defined in preceding paragraph in terms of g-difference operators.
For this purpose, first we take $ = L2(R) to be the space of functions 1 (z) such that

[ 10t Plaf e < oc
with the scalar product
Wra) = [ rla)da@le

Now, we construct a convenient orthonormal basis of L2 (R) consisting of (¢, a)-deformed Hermite functions
defined by

$0(239) = dn,a /o (@5 ) 0 (w3 ), (4.1)
where hy, o (25 q), wa(z;q) and d,, o are given by (3.1), (3.14) and (3.15), respectively.
Proposition 4.1. {¢%(z;q)}°, is a complete orthonormal set in L2 (R).

Proof. The continuous orthogonality relation (3.9) for h, o (2;q) can be written as

/ ¢101((x7 q)thn((E, q)|{1}|2a+1dx = 5n,m~
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Thus {¢%(x;¢)}52, is an orthonormal set in L2 (R). We prove that it is a complete set. Suppose that there
exists f € L2 (R) orthogonal to all ¢&(x;q),

/ % (x;q) f(x)|x[** T dx = 0, for all n € N.

— 00

By using the inverse formula (3.3), we obtain

/ VWl w; q)x" f(z)|z|** de = 0, for all n € N.

Using the technique that appears in [1] (p. 26), we deduce that f =0. O

Let ¢4 be the ¢-dilatation operator in the variable x, i.e. ,f(z) = f(¢gx). The operator of multiplication
by a function g will be denoted also by g.

Let G4q be the finite linear span of (¢, a)-deformed Hermite functions ¢%(z;q).

It is well known that a solution of the stationary Schrodinger equation is represented by eigenfunctions
of the Schrédinger operator.

Definition 4.1. The ¢-Schrédinger operator H acting on any function f in L2 (R) is defined by

=5 1) (3

where
2a+1
Ho—
- qa?
x [q‘2a5q—1 V1Itg 20122 /14 ¢ 2071225, — (1472 + q‘QO“lw?)I} :
2a+1
P sl
(1-q)a?

X [qéq’l \/1Jr(fT1$2 e \/mdq -1+ or? 4 quQilxz)I} ,
fe and f, are respectively the even and the odd parts of f and [ is the identity operator.
Theorem 4.1. H is a self-adjoint operator in Gy, with eigenfunctions
do(r;q), n=0,1,2,...,
and we have
Hey(w;q) = [n], o o0 (25q).

Proof. Let f,g € Gy, f = fe+ fo, 9 = ge + go. Due to the parity of the integrand in (H f, g), we can write

(Hf,9) = (Hefe,9e) + (Hofo, 9o),

where
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2041 7 . —2a “9a-3.2
q q 1+¢q x _ o
(Hefeus) =~ [ T o el

— 00

2a+1 1+q 20— 1$2
— / fo(q0)ge (@) 22>+ de

(o)
2a+1 —2a —2a—1,.2
q (1+4¢ +4q z°) —| 2a+1
=y - (@@ e e,
—o0
2a+1 2a—3 .2
q 1+qg=* a
e / 1 folg™ g da
2o+ 7 2ot /T g 20152 -
U Jolaro )l e
— 00
2041 2042 —2a0-1,.2
q (1+¢ +4q z?) — 2041
= 2 fola)gol@a d.

1

Using the substitutions u = ¢~z in the first integral and v = gz in the second integral, we obtain

2(X+1 1+q—2a 1’LL2 N
(H.fo.g0) = / Lol YL gl du

oo

2a+1 —2« —2a—3,,2
q q l+q u _ o
- [ rw (™) >+

— 00

q2a+1 /f " (1+q72a+q72a71u2)
(1- ¢ u?

= (fea Hege)'

+ ge(w)]u|*** du

17

The same argument can prove that (H,fo, go) = (fo, Hogo). Therefore, we conclude that, H is a self-adjoint

operator in G,,.

We have
He(¢§n($;Q) d2na |:\/ woz €y q tha q lx q ]
2ot ~
= _mdQn,a Wa@?‘l) [qizah%,a(qilx;‘l) + (1 +4q —2a-l 2)h2n a(qx Q)

_(1+q—2a+q 2c0—1 2>h2na(m q)]

Using the relation (3.7), it follows that

2a+1
(e q n—2a— —2a— 7
He(¢2n(x; Q)> = - (1 . q):r2 dQn,a wa(x; q) [(q2 2 1 q 2 1).’L‘2h2n,a($; q)]

= [2n] 0 92n (23 9),

and
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Ho((z)gn—i-l(x; Q)) = d2n+1,aHo |:\/ woc('r; q)ﬁ2n+1,a(q71$; Q):|

q2a+1
—mdzn-i-l,a wa(m; Q)
X [ghont1.0(a7 2;0) + T A + g2 ) hap o (g2 9) — (14 T2 + ¢ 2 12 hoy o (25 )]
q4a+2
= —mdznﬂ,a wa (73 q)

% (¢ han1.a(q w0) + (14 ¢ 2 2 hontr,a(amiq) — (0 + ¢ 27+ 47" 22 hapgaa(59)] -
Using the relation (3.8), it follows that

q4a+2

Ho(¢5,11 (%3 9)) = - g2?

= [[ZTL + 1]]q,a d)gn—‘,-l(xv Q)a

2n—2a —404—2)

d2n+1,a We (.’17; Q) [(q —q -T2B2n+1,a ({L‘; q)]

us desired. O

Let us note that, due to the regularity of ¢%(z;q), the singularity of H at £ = 0 can be omitted when
we apply H to the function f € Gyq,.

From the forward and backward shift operators (3.4) and (3.5), we define the operators a and a® on &4,
by means of 2 x 2 matrix forms:

N v 0 B
TV 4.
“f 1 —qx ( 0 8g-11/1 4 q20— 172 — g2+l t ) (4.3)

atpo (V e 1x25 -1 q 0 ><f> (4.4)

\/1— x 1+ g-20-1g25, — g=22=1 ) \ fo
q q qg — 4

The reader may verify that these operators are indeed mutually adjoint in the Hilbert space L2(R).
So, the g-Schrédinger operator H can be factorized as

H=a%a.
The action of the operators a and a™ on the basis {¢%(z;¢)}5°, of L2(R) leads to the explicit results:

Proposition 4.2. The following statements hold:

agy (x;q) = 0, (4.5)
ady(z;9) = \/[n], oPn-1(z30), n=1, (4.6)
aton(x;q) = mqﬁﬁﬂ(w;q), (4.7)
65 (w;9) = (nlga) "2a™" 65 (239), (4.8)

where [n], , is defined by (2.1).

Proof. Formula (4.6) follows from the forward and backward shift operators (3.4) and (3.5) and from the
fact that
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n—

=

[n],.q

q ’

dn a — 7dn— ,ae
V=g,

Formula (4.5) is an immediate consequence of the definition (4.1) and (4.6). Finally (4.8) is a consequence
of (4.7). O

From (4.6) and (4.7) one deduces that
a*agy(w;q) = [nl, . (@ 9), (4.9)
aa® o5 (x;9) = [n +1], , &5 (x5 9). (4.10)
The number operator N is defined in this case by the relations

ata=[N] aat =[N + 1,0 on Sg. (4.11)

q,o?

The formulas (4.11) can be inverted to determine an explicit expression of the operator N as follows:

= STozq log (1 — (1= q)aa™) + Slogq log(1-(1-gq)ata) —a-1. (4.12)
From (4.9), (4.10) and (4.12), we obtain:
Ny (x;9) = ngy (;q), (4.13)
and
[N,a] = —a, [N,at]=a" on G. (4.14)
Now, we consider the operators
b= N+(K+i)<a+%> a. b a+q7 N+<K+i>(a+%) K- (—I)N.

Using the relation

(2l 3 =47 [al,,

one easily verifies that the actions of the operators b and bt on the basis {¢% (x;q)}5°, are given by

bdon(w;9) = y/[2n] 3y d50—1 (%5 9); n>1,
bd%n41(250) = | [[2n + 20 + 2] 4 05, (59),
(4.15)
b5, (x19) = /[2n + 20+ 2] 15,11 (w3 9),
b 051 (x59) = \ /120 +2] 365, .0(59).

Now we are ready to construct an explicit realization of the operators K_, K, and K, generators of the
quantum algebra su, 3 (1,1) in terms of the oscillatorial operators a, a* and N by setting,

Kfzp)’(b)za K+:7(b+)27 KOZ%(N—i_a—’_l)v ’7:([2]%)_1'



20 K. Mezlini, N. Ouled Azaiez / J. Math. Anal. Appl. 480 (2019) 123357

From (4.15) we derive the actions of these operators on the basis {¢% (z; q) }5:

Kod3(z50) = 30+ + 163 (z30),

K 95,(w0) =y [[20+2] 3 [2n + 20 +2] 3 65,153 0),

Ko 1(x3q) = 7\/[271 +2] 3 2n+ 20 +4] 05, 15(259), (4.16)

K_¢5,(2;q) = 7\/[2n]q% 20 +2a] 3 5_s(z59), n=>1,

K_¢3, 1(x;q) = 'y\/[Qn]q% [2n + 20 + 2]q%¢§"n_1(ac;q), n > 1.

It follows that

K_K 65, (z30) =12 20+ 2]y [2n+ 20+ 2], 65u(r:)
K Ky @5(@0) =720 +2] 4 20+ 20 +4] 3 65,41 (x:9), )
K K_¢3,(x:0) =77 [2n] 3 [2n+20] 3 65, (x:q). '
K K _¢8,1(z9) =+ [2n] 3 20 +2a +2] 3 ¢5,11(259)-
Using the following identity (see [6] p.58)
[a]q[bfc]q+[b]q[cfa]qu[c]q[afb]q:O, (4.18)

witha=2n+2,b=-2n—2a,c=2and a =2n+ 2, b = —2n — 2a — 2, ¢ = 2 respectively, we obtain

2n+2] 1 2n+2a+2] 1 —[2n] 1 [2n+2a] 1 =[2] 1 [4n+ 2a + 2]
q q q q2 q2 q

1 1 1 1,
2 2 2 2

2n+4+2] 1 2n+2a+4] 1+ —[2n] 1 [2n+2a+2] 1 =[2] 1 [dn+2a+4] 1
q2 q2 q2 q2 q2 q2
By the identity [Qz]q% = [2]q% [z],, we obtain
[4n—|—2a—|—2]q% = [Z]q% [2n+a—|—1]q,
[4n+2a—|—4]q% = [Z]q% [2n—|—a—|—2]q,

which leads to the commutation relations:
[Ko, =K] = +K, [K_,Ki]=[2Ko], on &y
and the conjugation relations
Ky =Ko, K. =K_ on 6.

To analyse irreducible representations of the su 4 (1,1) algebra, we need the invariant Casimir operator C,
which in this case has the form:

1 2
C = {Ko—ﬂ K K_.
q

From (4.16) and (4.17) we obtain the action of this operator on the basis {¢%(x; q)}5%:
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Cogawia) = ([n+ 5]~ ol ln+al, ) 8 (ai0)
Coonia(wq) = [n + QTH] - [n]y[n+a+1], | 65,41 (x5 9).

—atl regpectively, we derive

: : _ a _ _ a _ a+l
Usmg(4.18)W1tha—n—|—§,b—n,c——5anda—n—i—%,b :

I
S
o
Il

{n—&-gr— [n],[n+a], = [gr;

21q 21q
2 2
a+1 a+1
[TH— } —[n], [n+a+1] :[ } .
2 p a a 2 p

The Casimir operator C has two eigenvalues [%]z in the subspaces foa formed by the even and odd
basis vectors {¢% (x; q) }o2, respectively. Thus &, splits into the direct sum of two su_} (1, 1)-irreducible

subspaces &/, and &_,,.

Remark 4.1. We deduce from (4.15) that the operators b, b* and N satisfy the relations

1+2v K N+v—vK

bb+ — qi 2 b+b = []_ + ZZ/K]q% q:F 2 on 6qa7 (419)

where v = a + % This leads to explicit expressions for the generators {b ,bT , N} of the g-deformed
Calogero—Vasiliev Oscillator algebra (see [17,16]). In particular, Macfarlane in [17] has shown that if v = 2+
this oscillator realises the g-deformed para-Bose oscillator of order p.

)
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