期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:503 |
Polynomial differential systems with even degree have no global centers | |
Article | |
Llibre, Jaume1  Valls, Claudia2  | |
[1] Univ Autonoma Barcelona, Dept Matemat, Barcelona 08193, Spain | |
[2] Univ Lisbon, Inst Super Tecn, Dept Matemat, Av Rovisco Pais, P-1049001 Lisbon, Portugal | |
关键词: Global centers; Polynomial differential system; Poincare compactification; | |
DOI : 10.1016/j.jmaa.2021.125281 | |
来源: Elsevier | |
【 摘 要 】
Let (x) over dot = P(x, y), (y) over dot = Q(x, y) be a differential system with Pand Qreal polynomials, and let d = max{deg P, deg Q}. A singular point pof this differential system is a global center if R-2\{p} is filled with periodic orbits. We prove that if dis even then the polynomial differential systems have no global centers. (C) 2021 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2021_125281.pdf | 262KB | download |