期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:503
Polynomial differential systems with even degree have no global centers
Article
Llibre, Jaume1  Valls, Claudia2 
[1] Univ Autonoma Barcelona, Dept Matemat, Barcelona 08193, Spain
[2] Univ Lisbon, Inst Super Tecn, Dept Matemat, Av Rovisco Pais, P-1049001 Lisbon, Portugal
关键词: Global centers;    Polynomial differential system;    Poincare compactification;   
DOI  :  10.1016/j.jmaa.2021.125281
来源: Elsevier
PDF
【 摘 要 】

Let (x) over dot = P(x, y), (y) over dot = Q(x, y) be a differential system with Pand Qreal polynomials, and let d = max{deg P, deg Q}. A singular point pof this differential system is a global center if R-2\{p} is filled with periodic orbits. We prove that if dis even then the polynomial differential systems have no global centers. (C) 2021 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2021_125281.pdf 262KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次