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Let ẋ = P (x, y), ẏ = Q(x, y) be a differential system with P and Q real polynomials, 
and let d = max{degP, degQ}. A singular point p of this differential system is a 
global center if R2 \{p} is filled with periodic orbits. We prove that if d is even then 
the polynomial differential systems have no global centers.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction and statement of the main results

A singular point q of a vector field defined in R2 is a center if it has a neighborhood filled of periodic 
orbits with the unique exception of q. The period annulus of the center q is the maximal neighborhood U

of q such that all the orbits contained in U are periodic except of course q. A center is global if its period 
annulus is R2 \ {q}. The notion of center goes back to Poincaré, see [7].

It is well known that any quadratic polynomial system (i.e. n = 2) has no global centers. The proof of 
this result is very large. It is based in classifying all the centers of the quadratic systems and then see that 
they are not global centers, see [1–3,8,9].

Let P, Q ∈ R[x, y] and d = max{degP, degQ}. We will show that the polynomial differential system

ẋ = P (x, y), ẏ = Q(x, y), (1)

with d even do not have global centers. This is the main aim of this paper. Our proof for all d even is shorter 
than the existing one for d = 2.
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Theorem 1. The polynomial differential system (1) with even degree has no global centers.

The proof of Theorem 1 is given in section 3.
Of course there are global centers for all the polynomial differential systems of odd degree, as for instance 

ẋ = −y(x2 + y2)k, ẏ = x(x2 + y2)k, for k = 1, 2, . . .. A global cubic center can be found in [5].
After the submission of this paper the authors were aware that the result of Theorem 1 was known, see 

Galeoti and Villarini [6], but our proof is different and shorter.
In the following section we state and prove some auxiliary results that will be used during the proof.

2. Auxiliary results

In the proof of Theorem 1 we will use the Poincaré compactification of a planar polynomial vector field 
X (x, y) = (P (x, y), Q(x, y)) of degree d. The Poincaré compactification of X , denoted by p(X ), is an induced 
vector field on S2 = {y = (y1, y2, y3) ∈ R3 : y2

1 + y2
2 + y2

3 = 1}. We call S2 the Poincaré sphere. For more 
details on the Poincaré compactification see [4, Chapter 5]. Here we just introduce what will be needed.

Denote by TpS2 the tangent space to S2 at the point p. Assume that X is defined in the plane T(0,0,1)S
2 =

R2. Consider the central projection f : T(0,0,1)S
2 → S2. This map defines two copies of X , one in the open 

northern hemisphere H+ and other in the open southern hemisphere H−. Denote by X 1 the vector field 
Df ◦ X defined on S2 except on its equator S1 = {y ∈ S2 : y3 = 0}. Clearly S1 is identified to the infinity 
of R2. In order to extend X 1 to a vector field on S2 (including S1) it is necessary that X satisfies suitable 
conditions. In the case that X is a planar polynomial vector field of degree n then p(X ) is the only analytic 
extension of yd−1

3 X ′ to S2. On S2 \ S1 = H+ ∪H− there are two symmetric copies of p(X ), one in H+ and 
other in H−, and knowing the behavior of p(X ) around S1, we know the behavior of X at infinity. The 
Poincaré compactification has the property that S1 is invariant under the flow of p(X ). The singular points 
of X are called the finite singular points of X or of p(X ), while the singular points of p(X ) contained in S1, 
i.e. at infinity, are called the infinite singular points of X or of p(X ). It is known that the infinity singular 
points appear in pairs diametrically opposed.

To study the vector field p(X ) we use six local charts on S2 given by Uk = {y ∈ S2 : yk > 0}, 
Vk = {y ∈ S2 : yk < 0} for k = 1, 2, 3. The corresponding local maps φk : Uk → R2 and ψk : Vk → R2 are 
defined as φk(y) = −ψk(y) = (ym/yk, yn/yk) for m < n and m, n �= k. We denote by z = (u, v) the value 
of φk(y) or ψk(y) for any k, such that (u, v) will play different roles depending on the local chart we are 
considering. The points of the infinity S1 in any chart have v = 0. The expression for p(X) in local chart 
(U1, φ1) is given by

u̇ = vd
[
−uP

(
1
v
,
u

v

)
+ Q

(
1
v
,
u

v

)]
, v̇ = −vd+1P

(
1
v
,
u

v

)
. (2)

We note that the expression of the vector field p(X) in the local chart (Vi, ψi) is equal to the expression in 
the local chart (Ui, φi) multiplied by (−1)d−1 for i = 1, 2, 3. Observe that the points (u, v) of S1, i.e. the 
points identified with the infinity of the plane R2, in any local chart have its coordinate v = 0.

The orthogonal projection under π(y1, y2, y3) = (y1, y2) of the closed northern hemisphere of S2 onto the 
plane y3 = 0 is a closed disc D of radius one centered at the origin of coordinates called the Poincaré disc. 
Since a copy of the vector field X on the plane R2 is in the open northern hemisphere of S2, the interior of 
the Poincaré disc D is identified with R2 and the boundary of D, the equator of S2, is identified with the 
infinity of R2. Consequently the phase portrait of the vector field X extended to the infinity corresponds to 
the projection of the phase portrait of the vector field p(X) on the Poincaré disc D.

The infinite singular points are the endpoints of the straight lines defined by the real linear factors of the 
homogeneous polynomial yPd(x, y) −xQd(x, y), being Pd and Qd the homogeneous parts of the polynomials 
P and Q of degree d.
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Let q be an infinite singular point and let h be a hyperbolic sector of q. We say that h is degenerate if 
its two separatrices are contained in the equator of S2 (i.e. in S1). It is well-known that an infinite singular 
point p formed by two degenerated hyperbolic sectors must have its linear part identically zero (see for 
instance Chapters 2, 3 and Theorems 2.5, 2.19 and 3.5 of [4].

For proving Theorem 1 we will use the following proposition which characterizes when a polynomial 
differential system has a global center.

Proposition 2. A polynomial vector field X (x, y) = (P (x, y), Q(x, y)) without a line of singular points at 
infinity, has a global center if and only if it has a unique finite singular point which is a center and all the 
infinite singular points in the Poincaré sphere, if they exist, must be formed by two degenerated hyperbolic 
sectors.

3. Proof of Theorem 1

It is well known that any homogeneous polynomial of degree d factorizes as

r1∏
i=1

(aix + biy)li
r2∏
k=0

(αkx
2 + βkxy + γky

2)jk ,

where li ≥ 0 for all i = 1, . . . , r1, jk ≥ 0 and β2
k − 4αkγk < 0 for k = 0, . . . , r2 and 

∑r1
i=1 li +

∑r2
k=0 2jk = d.

Let d1 be the degree of P and d2 be the degree of Q. We assume that d = max{d1, d2}. The infinite 
singular points in the Poincaré disc of system (1) correspond to the linear factors of the quantity

Gd(x, y) = yPd(x, y) − xQd(x, y) = 0

(it is well understood that Pd or Qd could be zero).
We will separate the proof of Theorem 1 in two propositions dealing respectively with the cases Gd �≡ 0

and Gd ≡ 0. We start with the case Gd �≡ 0.

Proposition 3. Any polynomial differential system (1) of degree d even and with Gd �≡ 0 do not have global 
centers.

Proof. Taking into account that Gd �≡ 0, doing a rotation of the coordinate with respect to the origin we 
can assume that all the infinite singular points are in the local charts U1 ∪ V1. We introduce the notation

Gd−k(x, y) = yPd−k(x, y) − xQd−k(x, y) = 0, k = 0, . . . , d.

In the local chart U1 system (1), using system (2), can be written as

u̇ = −Gd(1, u) + vGd−1(1, u) + . . . + vd−1G0(1, 0),

v̇ = −vPd(1, u) − v2Pd−1(1, u) − . . .− vdP0(1, u).
(3)

The Jacobian matrix of any singular point (ū, 0) of the local chart U1 is of the form
(

∂

∂u
Gd(1, ū) Gd−1(1, ū)

0 −Pd(1, ū)

)
.

So the singular point (ū, 0) if it exists (that is if Gd(1, ̄u) = 0) must be formed by two degenerate hyperbolic 

sectors, and as pointed out above it must be linearly zero. Hence 
∂
Gd(1, ̄u) = 0. This implies that 
∂u
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Gd(1, ̄u) = 0 and 
∂

∂u
Gd(1, ̄u) = 0 and so the singular point (ū, 0) must have multiplicity two as a zero of 

Gd(1, u). This implies that if Gd has a real linear factor then it must have at least multiplicity two and so 
in general must be of the form (recall that Gd has degree d + 1)

Gd =
r1∏
i=1

(aix + biy)li
r2∏
k=0

(αkx
2 + βkxy + γky

2)jk , (4)

where li ≥ 2 for all i = 1, . . . , r1, jk ≥ 0 and β2
k−4αkγk < 0 for k = 0, . . . , r2 and 

∑r1
i=1 li+

∑r2
k=0 2jk = d +1.

Note that since d + 1 is odd in (4), there exists at least i ∈ {1, . . . , r1} and without loss of generality we 
can assume that it is i = 1, such that l1 ≥ 3 is odd. Then

Gd(x, y) = (a1x + b1y)l1
r1∏
i=2

(aix + biy)li
r2∏
k=0

(αkx
2 + βkxy + γky

2)jk .

We can assume without loss of generality that b1 �= 0, otherwise we do a rotation with respect to the origin. 
Note that

Gd(1, u) = (a1 + b1u)l1
r1∏
i=2

(ai + biu)li
r2∏
k=0

(αk + βku + γku
2)jk .

Setting the new variable a1 + b1u = U (that is u = (U − a1)/b1 we have

Gd(1, U) = Gd

(
1, U − a1

b1

)
=: U l1Γ + h.o.t., (5)

where

Γ =
r1∏
i=2

(
aib1 − bia1

b1

)li r2∏
k=0

(
αkb

2
1 − βka1b1 + γka

2
1

b21

)jk

�= 0

(because U = 0 has exactly multiplicity l1) and h.o.t means the higher order terms in the variable U . Taking 
the new variables (U, v), it follows from (3) and (5) that the system in the local chart U1 restricted to V = 0
can be written as

U̇ |v=0 = (d + 1)U l1Γ + h.o.t., v̇|v=0 = 0.

Note that the U -axis is invariant. In the positive semi-axis {U > 0, V = 0} and in a neighborhood of 
(U, V ) = (0, 0) the orbit travels in the opposite sense to the orbit in the negative semi-axis {U < 0, V = 0}, 
and so the local phase portrait around (U, V ) = (0, 0) cannot be formed by two degenerated hyperbolic 
sectors. Hence, any Hamiltonian system (1) with n even and with Hn+1 of the form (4) cannot have global 
centers. This concludes the proof of Proposition 3. �
Proposition 4. A polynomial differential system (1) of degree d even and with Gd ≡ 0 has no global centers.

Proof. Taking into account that the line at infinity is formed by singular points we must have that

Gd(x, y) ≡ 0 that is yPd(x, y) ≡ xQd(x, y),

which implies that there exists a polynomial Rd(x, y) of degree d − 1 odd so that

Pd(x, y) = xRd(x, y) and Qd(x, y) = yRd(x, y) (6)
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Note if system (1) has a global center then it has a unique finite singular point which is the origin and since 
the period annulus of that finite singular point is R2 \ 0, then the boundary of the period annulus U of the 
center of p(X ) located at (0, 0, 1) is the equator of S2 or H+. Since there are no finite singular points in 
H+, except the center at (0, 0, 1), and the infinite is formed by singular points, it follows that the boundary 
of the period annulus U is either a finite periodic orbit γ, or it is S1. If it is S1 then since it is formed by 
fixed points, then each singular point cannot be the ω-limit or de α-limit of any orbit. Now we show that 
it cannot be a finite periodic orbit γ. It would be, we consider the Poincaré map π defined in a transversal 
section Π through γ. Since the vector field p(X ) is analytic, it follows that π is also analytic. Hence as π is 
the identity map in Π ∩U it must be the identity map in Π ∩ (H+ \U). But then the orbits in Π ∩ (H+ \U)
near U are also periodic, and γ is not the boundary of U , a contradiction.

In the local chart U1 system (1), using system (2), can be written as

u̇ = vGd−1(1, u) + . . . + vd−1G0(1, u),

v̇ = −vRd(1, u) − v2Pd−1(1, u) − . . .− vdP0(1, u).
(7)

The line at infinity v = 0 if filled by singular points. We introduce the parameterization of time ds = vdt. 
With this new time system (7) becomes

u̇ = Gd−1(1, u) + vGd−2(1, u) + . . . + vd−2G0(1, u),

v̇ = −Rd(1, u) − vPd−1(1, u) − . . .− vd−1P0(1, u),
(8)

where now the dot means derivative in the new time s.
Since Rd(1, u) �≡ 0, there exists u so that Rd(1, u) �= 0, and so a point (u, 0) is a regular point for system 

(8). Since v̇|v=0 = −Rd(1, u), and v̇|v=0,u=u �= 0 such point which is a singular point of system (8) would be 
the ω-limit or the α − limit of some orbit of system (7) and by the explanation above, system (1) cannot 
have a global center. �
Proof of Theorem 1. The proof of Theorem 1 is an immediate consequence of Propositions 3 and 4. �
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